天津铁道职业技术学院《印前与书籍装帧设计》2023-2024学年第一学期期末试卷_第1页
天津铁道职业技术学院《印前与书籍装帧设计》2023-2024学年第一学期期末试卷_第2页
天津铁道职业技术学院《印前与书籍装帧设计》2023-2024学年第一学期期末试卷_第3页
天津铁道职业技术学院《印前与书籍装帧设计》2023-2024学年第一学期期末试卷_第4页
天津铁道职业技术学院《印前与书籍装帧设计》2023-2024学年第一学期期末试卷_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页天津铁道职业技术学院《印前与书籍装帧设计》

2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共15个小题,每小题1分,共15分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉中,特征提取是非常关键的一步。假设我们要对一组风景图像进行特征提取,以便后续的图像检索和分类任务。以下哪种特征提取方法能够捕捉到图像的全局和局部特征,并且对图像的旋转、缩放等变换具有较好的不变性?()A.尺度不变特征变换(SIFT)B.方向梯度直方图(HOG)C.局部二值模式(LBP)D.卷积神经网络自动学习的特征2、在计算机视觉的目标识别任务中,除了识别目标的类别,还需要确定目标的位置和大小。假设我们要在一幅复杂的图像中识别多个不同大小的物体,以下哪种目标识别算法能够适应不同尺度的目标?()A.基于滑动窗口的目标识别算法B.基于特征金字塔的目标识别算法C.基于注意力机制的目标识别算法D.基于模板匹配的目标识别算法3、计算机视觉中的图像修复是填补图像中的缺失或损坏部分。假设我们有一张老照片,其中部分区域被损坏,需要进行修复。以下哪种图像修复方法能够生成自然、合理的内容,与周围区域融合良好?()A.基于纹理合成的修复方法B.基于插值和填充的修复方法C.基于深度学习的图像修复网络,如ContextEncoderD.基于图像分解和重构的修复方法4、计算机视觉在安防监控领域有重要应用。假设要通过摄像头监控一个公共场所,以下关于计算机视觉在安防监控中的应用描述,哪一项是不正确的?()A.可以实时检测异常行为,如人群聚集、奔跑等B.能够对人员进行身份识别和认证C.计算机视觉系统可以独立完成所有的安防监控任务,不需要人工干预D.与其他安防设备和系统集成,提高整体的安全性和防范能力5、对于图像的超分辨率重建任务,假设要将一张低分辨率的图像恢复为高分辨率图像,同时保留图像的细节和清晰度。这张低分辨率图像可能存在模糊和失真。以下哪种方法在处理这种情况时可能表现更好?()A.基于插值的方法,如双线性插值和双三次插值B.基于深度学习的超分辨率重建模型,如SRCNNC.对低分辨率图像进行简单的锐化处理D.不进行任何处理,直接使用低分辨率图像6、计算机视觉中的动作识别是对视频中人物或物体的动作进行分类和识别。以下关于动作识别的描述,不准确的是()A.动作识别需要分析视频中的时空特征来理解动作的模式和类别B.双流卷积网络在动作识别任务中被广泛应用,分别处理空间和时间信息C.动作识别在体育分析、视频监控和智能安防等领域具有重要的应用价值D.动作识别技术已经非常成熟,能够准确识别各种复杂和细微的动作7、当进行图像的光流估计时,假设要计算图像中像素的运动速度和方向。以下哪种光流估计算法在复杂场景下可能更准确?()A.Horn-Schunck算法B.Lucas-Kanade算法C.随机估计光流D.不进行光流估计,忽略像素的运动信息8、计算机视觉在无人驾驶飞行器(UAV)中的应用可以实现自主导航和环境感知。假设一个UAV需要在复杂的环境中飞行并避开障碍物。以下关于计算机视觉在UAV中的描述,哪一项是错误的?()A.可以通过视觉传感器获取周围环境的信息,包括地形、建筑物和其他障碍物B.能够实时分析图像,计算与障碍物的距离和相对速度,为飞行决策提供依据C.计算机视觉在UAV中的应用完全不需要与其他传感器(如惯性测量单元)的数据融合D.可以利用深度学习算法进行端到端的飞行控制,实现自主飞行9、计算机视觉中的光流计算用于估计图像中像素的运动。假设要分析一段视频中物体的运动速度和方向。以下关于光流计算的描述,哪一项是不准确的?()A.可以通过比较连续帧之间的像素差异来计算光流B.光流计算能够为视频中的目标跟踪和行为分析提供重要信息C.无论视频的帧率和分辨率如何,光流计算都能准确地估计像素运动D.深度学习方法也被应用于光流计算,提高了计算的准确性和效率10、在计算机视觉的实际应用中,模型的实时性是一个重要的考虑因素。以下关于实时性的描述,不正确的是()A.对于一些需要实时响应的应用,如自动驾驶和工业检测,模型的处理速度至关重要B.模型的复杂度、计算资源和算法效率都会影响实时性C.可以通过模型压缩、硬件加速和优化算法等方法来提高模型的实时性D.实时性只与模型本身有关,与硬件设备和系统架构无关11、在计算机视觉的表情识别任务中,判断图像或视频中人物的表情。假设要开发一个用于在线教育的表情识别系统,以下关于表情识别方法的描述,哪一项是不正确的?()A.可以通过分析面部肌肉的运动和特征点的变化来识别表情B.深度学习模型能够学习不同表情的模式和特征,实现准确的表情分类C.表情识别系统需要考虑光照、头部姿态和遮挡等因素的影响D.表情识别可以准确地识别出所有细微和复杂的表情,不受个体差异和文化背景的影响12、图像分割是将图像分成不同的区域或对象。假设要对医学影像中的肿瘤区域进行精确分割,以下关于图像分割方法的描述,正确的是:()A.手动分割是最准确的方法,不需要借助计算机算法B.基于阈值的图像分割方法能够适用于所有类型的医学影像分割问题C.深度学习中的全卷积网络(FCN)及其变体在医学图像分割中具有很大的潜力D.图像分割的结果只取决于所使用的分割算法,与图像的预处理无关13、计算机视觉中的行人重识别是指在不同摄像头拍摄的图像中识别出同一个行人。假设要在一个大型商场的监控系统中实现行人重识别,以下关于行人重识别方法的描述,正确的是:()A.基于颜色和纹理特征的方法对行人的姿态和光照变化不敏感,识别准确率高B.深度学习中的度量学习方法能够学习到行人的判别性特征,但容易受到背景干扰C.行人重识别系统只需要关注行人的外观特征,不需要考虑行人的行为特征D.行人重识别在不同场景和摄像头视角下的性能始终保持稳定,不受影响14、计算机视觉中的姿态估计任务,确定物体在空间中的位置和方向。假设要估计一个机器人手臂的姿态,以下关于姿态估计方法的描述,正确的是:()A.基于几何模型的姿态估计方法在复杂环境中总是能够准确估计姿态B.深度学习中的端到端姿态估计网络不需要对物体的结构和运动有先验了解C.姿态估计的结果不受相机参数和拍摄角度的影响D.结合多种传感器数据和深度学习的方法可以提高姿态估计的精度和鲁棒性15、图像分割是将图像分成不同的区域,每个区域具有相似的特征。假设要对医学图像进行器官分割,以下关于图像分割方法的描述,哪一项是不正确的?()A.基于阈值的分割方法简单直接,但对于复杂图像效果往往不佳B.基于边缘检测的分割方法通过寻找图像中的边缘来划分区域,但容易受到噪声影响C.基于深度学习的语义分割方法能够实现像素级别的分类,效果较好,但计算量较大D.图像分割只适用于灰度图像,对于彩色图像无法进行有效的分割二、简答题(本大题共4个小题,共20分)1、(本题5分)简述图像的小波变换的特点。2、(本题5分)简述图像分割的评价指标。3、(本题5分)解释计算机视觉中的目标跟踪方法。4、(本题5分)说明计算机视觉在制鞋工业中的作用。三、应用题(本大题共5个小题,共25分)1、(本题5分)设计一个计算机视觉程序,能够从监控视频中检测出异常行为。2、(本题5分)通过深度学习模型,对一批手写数字图像进行识别和分类。3、(本题5分)设计一个基于计算机视觉的声纹识别系统。4、(本题5分)在农业领域,使用计算机视觉检测农作物的病虫害情况。5、(本题5分)利用目标检测算法,在图像中检测出特定的动物。四、分析题(本大题共4个小题,共40分)1、(本题10分)一家环保组织设计了一系列公益海报,旨在呼吁人们关注气候变化。海报运用了震撼的摄影图片和简洁有力的文字。请探讨这些海报在引起公众共鸣、传播环保理念、推动环保行动方面的效果,以及设计手法对信息传达的增强作用。2、(本题10分)观察某电影节的开幕式舞台设计,思考如何通过多

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论