2025年高考一轮复习 专题26 双曲线(思维导图+知识清单+核心素养分析+方法归纳)_第1页
2025年高考一轮复习 专题26 双曲线(思维导图+知识清单+核心素养分析+方法归纳)_第2页
2025年高考一轮复习 专题26 双曲线(思维导图+知识清单+核心素养分析+方法归纳)_第3页
2025年高考一轮复习 专题26 双曲线(思维导图+知识清单+核心素养分析+方法归纳)_第4页
2025年高考一轮复习 专题26 双曲线(思维导图+知识清单+核心素养分析+方法归纳)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题26双曲线目录01思维导图02知识清单03核心素养分析04方法归纳一.双曲线的定义平面内与两个定点F1,F2的距离差的绝对值等于非零常数(小于|F1F2|)的点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫做双曲线的焦距.其数学表达式:集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(1)若a<c,则集合P为双曲线;(2)若a=c,则集合P为两条射线;(3)若a>c,则集合P为空集.二.双曲线的标准方程和几何性质标准方程eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)eq\f(y2,a2)-eq\f(x2,b2)=1(a>0,b>0)性质图形焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c范围x≤-a或x≥a,y∈Ry≤-a或y≥a,x∈R对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b;实半轴长:a,虚半轴长:b离心率e=eq\f(c,a)∈(1,+∞)渐近线y=±eq\f(b,a)xy=±eq\f(a,b)xa,b,c关系c2=a2+b2(c>a>0,c>b>0)三.等轴双曲线实轴和虚轴等长的双曲线叫做等轴双曲线,其渐近线方程为y=±x,离心率为e=eq\r(2).四.直线与双曲线的位置关系和弦长1.判断直线与双曲线交点个数的方法:将直线方程代入双曲线方程,消元,得关于x或y的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定.2.弦长公式设直线y=kx+b与双曲线交于A(x1,y1),B(x2,y2),则|AB|=eq\r(1+k2)|x1-x2|=eq\r(1+k2)·eq\r((x1+x2)2-4x1x2).温馨提示:一.求标准方程1.定义法:根据双曲线的定义确定a2,b2的值,再结合焦点位置,求出双曲线方程,即“先定型,再定量”2.待定系数法:先确定焦点在x轴还是y轴上,设出标准方程,再由条件确定a2,b2的值,即“先定型,再定量”,如果焦点的位置不好确定,可将双曲线的方程设为eq\f(x2,m2)-eq\f(y2,n2)=λ(λ≠0)或mx2-ny2=1(mn>0),再根据条件求解.3.常用设法:①与双曲线eq\f(x2,a2)-eq\f(y2,b2)=1共渐近线的方程可设为eq\f(x2,a2)-eq\f(y2,b2)=λ(λ≠0);②若双曲线的渐近线方程为y=±eq\f(b,a)x,则双曲线的方程可设为eq\f(x2,a2)-eq\f(y2,b2)=λ(λ≠0).二.求双曲线离心率或其取值范围的方法1.直接求出a,c的值,利用离心率公式直接求解.2.列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e的方程(或不等式)求解.3.双曲线eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)的渐近线可由eq\f(x2,a2)-eq\f(y2,b2)=0即得两渐近线方程eq\f(x,a)±eq\f(y,b)=0.4.双曲线的渐近线的相关结论(1)若双曲线的渐近线方程为y=±eq\f(b,a)x(a>0,b>0),即eq\f(x,a)±eq\f(y,b)=0,则双曲线的方程可设为eq\f(x2,a2)-eq\f(y2,b2)=λ(λ≠0).(2)双曲线的焦点到其渐近线的距离等于虚半轴长b.(3)双曲线eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)的渐近线y=±eq\f(b,a)x的斜率k与离心率e的关系:e=eq\r(1+\b\lc\(\rc\)(\a\vs4\al\co1(\f(b,a)))\s\up12(2))=eq\r(1+k2).三.圆锥曲线的焦点三角形的相关结论(1)焦点三角形:椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形,∠F1PF2=θ,△PF1F2的面积为S,则在椭圆eq\f(x2,a2)+eq\f(y2,b2)=1(a>b>0)中①当P为短轴端点时,θ最大.②S=eq\f(1,2)|PF1||PF2|·sinθ=b2taneq\f(θ,2)=c|y0|,当|y0|=b时,即点P为短轴端点时,S取最大值,最大值为bc.③焦点三角形的周长为2(a+c).(2)若P是双曲线上不同于实轴两端点的任意一点,F1,F2分别为双曲线的左、右焦点,则S△PF1F2=eq\f(b2,tan\f(θ,2)),其中θ为∠F1PF2.双曲线是高考考查的重点和热点,其中双曲线的方程、渐近线与离心率等几何性质常以选择题、填空题形式出现;直线与双曲线的综合问题定点、定值问题等常常以解答题形式出现。题型一双曲线的定义及应用例1(1).已知定点,动点满足,则动点的轨迹为(

)A.双曲线的上支 B.双曲线的下支C.双曲线的左支 D.轴负半轴上的射线答案A分析根据题意,得到,结合双曲线的定义,即可得到答案.解析由定点且在y轴上,可得,因为,即,根据双曲线的定义得,点的轨迹为双曲线的上支.故选:A.(2).设,是双曲线的左,右焦点,过的直线与轴和的右支分别交于点,,若是正三角形,则(

)A.2 B.4 C.8 D.16答案B分析根据双曲线的定义及等边三角形的性质计算可得.解析对于双曲线,则,根据双曲线定义有,又,,故.故选:B

方法归纳:在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF1|-|PF2||=2a,运用平方的方法,建立与|PF1|·|PF2|的联系.题型二双曲线的标准方程过点且与椭圆有相同焦点的双曲线方程为(

)A. B. C. D.答案D分析求出椭圆的焦点可得双曲线的焦点,结合双曲线经过点,可求得双曲线方程.解析由,得,所以焦点在y轴上,且.设双曲线的方程为,所以解得,,所以双曲线的方程为.故选:D.方法归纳:求双曲线的标准方程的方法(1)定义法:由题目条件判断出动点轨迹是双曲线,确定2a,2b或2c,从而求出a2,b2.(2)待定系数法:“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为eq\f(x2,m2)-eq\f(y2,n2)=λ(λ≠0),再根据条件求λ的值.题型三双曲线的几何性质命题点1渐近线例34.已知双曲线:(,)的右焦点为,左、右顶点分别为,,点在上且轴,直线,与轴分别交于点,,若(为坐标原点),则的渐近线方程为(

)A. B. C. D.答案C分析由题意求出直线和直线的方程,分别令,可求出,结合代入化简即可得出答案.解析由题意知,因为轴,所以令,可得,解得:,设,直线的斜率为:,所以直线的方程为:,令可得,所以,直线的斜率为:所以直线的方程为:,令可得,所以,由可得,解得:,所以,解得:,即所以的渐近线方程为,故选:C.方法归纳:(1)渐近线的求法:求双曲线eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)的渐近线的方法是令eq\f(x2,a2)-eq\f(y2,b2)=0,即得两渐近线方程eq\f(x,a)±eq\f(y,b)=0eq\b\lc\(\rc\)(\a\vs4\al\co1(y=±\f(b,a)x)).(2)在双曲线的几何性质中重点是渐近线方程和离心率,在双曲线eq\f(x2,a2)-eq\f(y2,b2)=1(a>0,b>0)中,离心率e与双曲线的渐近线的斜率k=±eq\f(b,a),满足关系式e2=1+k2.命题点2离心率例4.已知双曲线的右顶点为,右焦点为,为渐近线上一动点,且在第一象限内,为坐标原点,当最大时,,则双曲线的离心率为(

)A.2 B. C. D.答案D分析设出点的坐标,然后表示出的斜率,利用到角公式表示出,最后结合基本不等式求出取得最大值时的条件,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论