版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市、南京市2025届高三第一次模拟考试数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为()A. B. C. D.2.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是().A. B. C. D.3.已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是()A. B. C. D.4.已知等差数列的前n项和为,,则A.3 B.4 C.5 D.65.已知三棱锥中,为的中点,平面,,,则有下列四个结论:①若为的外心,则;②若为等边三角形,则;③当时,与平面所成的角的范围为;④当时,为平面内一动点,若OM∥平面,则在内轨迹的长度为1.其中正确的个数是().A.1 B.1 C.3 D.46.我国宋代数学家秦九韶(1202-1261)在《数书九章》(1247)一书中提出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.其实质是根据三角形的三边长,,求三角形面积,即.若的面积,,,则等于()A. B. C.或 D.或7.设、是两条不同的直线,、是两个不同的平面,则的一个充分条件是()A.且 B.且 C.且 D.且8.A. B. C. D.9.如图是二次函数的部分图象,则函数的零点所在的区间是()A. B. C. D.10.执行如图所示的程序框图,若输入,,则输出的()A.4 B.5 C.6 D.711.设,,是非零向量.若,则()A. B. C. D.12.已知复数,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.等腰直角三角形内有一点P,,,,,则面积为______.14.在的展开式中的系数为,则_______.15.已知函数的部分图象如图所示,则的值为____________.16.已知函数恰好有3个不同的零点,则实数的取值范围为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若对任意x0,f(x)0恒成立,求实数a的取值范围;(2)若函数f(x)有两个不同的零点x1,x2(x1x2),证明:.18.(12分)已知,求的最小值.19.(12分)已知数列为公差为d的等差数列,,,且,,依次成等比数列,.(1)求数列的前n项和;(2)若,求数列的前n项和为.20.(12分)已知数列满足,,其前n项和为.(1)通过计算,,,猜想并证明数列的通项公式;(2)设数列满足,,,若数列是单调递减数列,求常数t的取值范围.21.(12分)某健身馆为响应十九届四中全会提出的“聚焦增强人民体质,健全促进全民健身制度性举措”,提高广大市民对全民健身运动的参与程度,推出了健身促销活动,收费标准如下:健身时间不超过1小时免费,超过1小时的部分每小时收费标准为20元(不足l小时的部分按1小时计算).现有甲、乙两人各自独立地来该健身馆健身,设甲、乙健身时间不超过1小时的概率分别为,,健身时间1小时以上且不超过2小时的概率分别为,,且两人健身时间都不会超过3小时.(1)设甲、乙两人所付的健身费用之和为随机变量(单位:元),求的分布列与数学期望;(2)此促销活动推出后,健身馆预计每天约有300人来参与健身活动,以这两人健身费用之和的数学期望为依据,预测此次促销活动后健身馆每天的营业额.22.(10分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.【详解】依题意有,①,②①②得,又因为,所以,在上单调递增,所以函数的单调递增区间为.故选:D.【点睛】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.2、A【解析】
作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可.【详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴这个四棱锥中最长棱的长度是.故选.【点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题.3、A【解析】
结合已知可知,可求,进而可求,代入,结合,可求,即可判断.【详解】图象上相邻两个极值点,满足,即,,,且,,,,,,当时,为函数的一个极小值点,而.故选:.【点睛】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用.4、C【解析】
方法一:设等差数列的公差为,则,解得,所以.故选C.方法二:因为,所以,则.故选C.5、C【解析】
由线面垂直的性质,结合勾股定理可判断①正确;反证法由线面垂直的判断和性质可判断②错误;由线面角的定义和转化为三棱锥的体积,求得C到平面PAB的距离的范围,可判断③正确;由面面平行的性质定理可得线面平行,可得④正确.【详解】画出图形:若为的外心,则,平面,可得,即,①正确;若为等边三角形,,又可得平面,即,由可得,矛盾,②错误;若,设与平面所成角为可得,设到平面的距离为由可得即有,当且仅当取等号.可得的最大值为,即的范围为,③正确;取中点,的中点,连接由中位线定理可得平面平面可得在线段上,而,可得④正确;所以正确的是:①③④故选:C【点睛】此题考查立体几何中与点、线、面位置关系有关的命题的真假判断,处理这类问题,可以用已知的定理或性质来证明,也可以用反证法来说明命题的不成立.属于一般性题目.6、C【解析】
将,,,代入,解得,再分类讨论,利用余弦弦定理求,再用平方关系求解.【详解】已知,,,代入,得,即,解得,当时,由余弦弦定理得:,.当时,由余弦弦定理得:,.故选:C【点睛】本题主要考查余弦定理和平方关系,还考查了对数学史的理解能力,属于基础题.7、B【解析】由且可得,故选B.8、A【解析】
直接利用复数代数形式的乘除运算化简得答案.【详解】本题正确选项:【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.9、B【解析】
根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】∵,结合函数的图象可知,二次函数的对称轴为,,,∵,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.10、C【解析】
根据程序框图程序运算即可得.【详解】依程序运算可得:,故选:C【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.11、D【解析】试题分析:由题意得:若,则;若,则由可知,,故也成立,故选D.考点:平面向量数量积.【思路点睛】几何图形中向量的数量积问题是近几年高考的又一热点,作为一类既能考查向量的线性运算、坐标运算、数量积及平面几何知识,又能考查学生的数形结合能力及转化与化归能力的问题,实有其合理之处.解决此类问题的常用方法是:①利用已知条件,结合平面几何知识及向量数量积的基本概念直接求解(较易);②将条件通过向量的线性运算进行转化,再利用①求解(较难);③建系,借助向量的坐标运算,此法对解含垂直关系的问题往往有很好效果.12、B【解析】
利用复数除法、加法运算,化简求得,再求得【详解】,故.故选:B【点睛】本小题主要考查复数的除法运算、加法运算,考查复数的模,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用余弦定理计算,然后根据平方关系以及三角形面积公式,可得结果.【详解】设由题可知:由,,,所以化简可得:则或,即或由,所以所以故答案为:【点睛】本题主要考查余弦定理解三角形,仔细观察,细心计算,属基础题.14、2【解析】
首先求出的展开项中的系数,然后根据系数为即可求出的取值.【详解】由题知,当时有,解得.故答案为:.【点睛】本题主要考查了二项式展开项的系数,属于简单题.15、【解析】
由图可得的周期、振幅,即可得,再将代入可解得,进一步求得解析式及.【详解】由图可得,,所以,即,又,即,,又,故,所以,.故答案为:【点睛】本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题.16、【解析】
恰好有3个不同的零点恰有三个根,然后转化成求函数值域即可.【详解】解:恰好有3个不同的零点恰有三个根,令,,在递增;,递减,递增,时,在有一个零点,在有2个零点;故答案为:.【点睛】已知函数的零点个数求参数的取值范围是重点也是难点,这类题一般用分离参数的方法,中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】
(1)求出,判断函数的单调性,求出函数的最大值,即求的范围;(2)由(1)可知,.对分和两种情况讨论,构造函数,利用放缩法和基本不等式证明结论.【详解】(1)由,得.令.当时,;当时,;在上单调递增,在上单调递减,.对任意恒成立,.(2)证明:由(1)可知,在上单调递增,在上单调递减,.若,则,令在上单调递增,,.又,在上单调递减,.若,则显然成立.综上,.又以上两式左右两端分别相加,得,即,所以.【点睛】本题考查利用导数解决不等式恒成立问题,利用导数证明不等式,属于难题.18、【解析】
讨论和的情况,然后再分对称轴和区间之间的关系,最后求出最小值【详解】当时,,它在上是减函数故函数的最小值为当时,函数的图象思维对称轴方程为当时,,函数的最小值为当时,,函数的最小值为当时,,函数的最小值为综上,【点睛】本题主要考查了二次函数在闭区间上的最值,二次函数的性质的应用,体现了分类讨论的数学思想,属于中档题。19、(1)(2)【解析】
(1)利用等差数列的通项公式以及等比中项求出公差,从而求出,再利用等比数列的前项和公式即可求解.(2)由(1)求出,再利用裂项求和法即可求解.【详解】(1),且,,依次成等比数列,,即:,,,,,;(2),.【点睛】本题考查了等差数列、等比数列的通项公式、等比数列的前项和公式、裂项求和法,需熟记公式,属于基础题.20、(1),证明见解析;(2)【解析】
(1)首先利用赋值法求出的值,进一步利用定义求出数列的通项公式;(2)首先利用叠乘法求出数列的通项公式,进一步利用数列的单调性和基本不等式的应用求出参数的范围.【详解】(1)数列满足,,其前项和为.所以,,则,,,所以猜想得:.证明:由于,所以,则:(常数),所以数列是首项为1,公差为的等差数列.所以,整理得.(2)数列满足,,所以,则,所以.则,所以,所以,整理得,由于,所以,即.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠乘法的应用,函数的单调性在数列中的应用,基本不等式的应用,主要考察学生的运算能力和转换能力,属于中档题型.21、(1)见解析,40元(2)6000元【解析】
(1)甲、乙两人所付的健身费用都是0元、20元、40元三种情况,因此甲、乙两人所付的健身费用之和共有9种情况,分情况计算即可(2)根据(1)结果求均值.【详解】解:(1)由题设知可能取值为0,20,40,60,80,则;;;;.故的分布列为:020406080所以数学期望(元)(2)此次促销活动后健身馆每天的营业额预计为:(元)【点睛】考查离散型随机变量的分布列及其期望的求法,中档题.22、每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解析】
设每天派出A型卡车辆,则派出B型卡车辆,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 研磨卷项目立项申请报告
- 气化器气化炉生产加工项目可行性研究报告
- 年产xxx汽车车身零部件项目可行性分析报告
- 刷投资建设项目可行性分析报告
- 2024年离婚协议书公证指南2篇
- 2025用工合同协议书范文
- 2025视频制作合同范本
- 图表示学习算法-洞察分析
- 涂层抗氧化性能-洞察分析
- 2024年物业费用管理协议3篇
- 重庆市劳动人事争议调解仲裁
- 高等学校建筑学专业本科(五年制)教育评估标准
- 铝合金理论重量表
- 炼铁厂3#烧结主抽风机拆除安全专项方案
- 四年级上册英语期末复习课件综合复习及检测讲义 牛津上海版一起
- 2020年污水处理厂设备操作维护必备
- LSS-250B 纯水冷却器说明书
- 《煤矿开采学》课程设计实例
- (完整版)todo,doingsth初中魔鬼训练带答案
- 防止返贫监测工作开展情况总结范文
- 2015年度设备预防性维护计划表
评论
0/150
提交评论