版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省藁城市第一中学2025届高考数学二模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三棱锥的四个顶点都在球的球面上,平面,是边长为的等边三角形,若球的表面积为,则直线与平面所成角的正切值为()A. B. C. D.2.在中,角,,的对边分别为,,,若,,,则()A. B.3 C. D.43.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B. C. D.4.已知集合,,则中元素的个数为()A.3 B.2 C.1 D.05.已知定义在R上的偶函数满足,当时,,函数(),则函数与函数的图象的所有交点的横坐标之和为()A.2 B.4 C.5 D.66.已知椭圆:的左,右焦点分别为,,过的直线交椭圆于,两点,若,且的三边长,,成等差数列,则的离心率为()A. B. C. D.7.已知某几何体的三视图如图所示,则该几何体的体积是()A. B.64 C. D.328.执行如图所示的程序框图,若输入,,则输出的()A.4 B.5 C.6 D.79.如图所示的茎叶图为高三某班名学生的化学考试成绩,算法框图中输入的,,,,为茎叶图中的学生成绩,则输出的,分别是()A., B.,C., D.,10.设复数满足,在复平面内对应的点为,则不可能为()A. B. C. D.11.若函数在时取得极值,则()A. B. C. D.12.设,是方程的两个不等实数根,记().下列两个命题()①数列的任意一项都是正整数;②数列存在某一项是5的倍数.A.①正确,②错误 B.①错误,②正确C.①②都正确 D.①②都错误二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的两条渐近线斜率分别为,,若,则该双曲线的离心率为________.14.执行右边的程序框图,输出的的值为.15.有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则对应的排法有______种;______;16.双曲线的焦点坐标是_______________,渐近线方程是_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.(1)求曲线的普通方程和极坐标方程;(2)设直线与曲线交于两点,求的取值范围.18.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圆的半径为,求△ABC面积的最大值.19.(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,射线的极坐标方程为,射线的极坐标方程为.(Ⅰ)写出曲线的极坐标方程,并指出是何种曲线;(Ⅱ)若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围.20.(12分)在直角坐标系中,圆的参数方程为(为参数),以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)直线的极坐标方程是,射线与圆的交点为、,与直线的交点为,求线段的长.21.(12分)如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线.(1)求曲线的方程;(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.22.(10分)已知椭圆,上顶点为,离心率为,直线交轴于点,交椭圆于,两点,直线,分别交轴于点,.(Ⅰ)求椭圆的方程;(Ⅱ)求证:为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
设为中点,先证明平面,得出为所求角,利用勾股定理计算,得出结论.【详解】设分别是的中点平面是等边三角形又平面为与平面所成的角是边长为的等边三角形,且为所在截面圆的圆心球的表面积为球的半径平面本题正确选项:【点睛】本题考查了棱锥与外接球的位置关系问题,关键是能够通过垂直关系得到直线与平面所求角,再利用球心位置来求解出线段长,属于中档题.2、B【解析】由正弦定理及条件可得,即.,∴,由余弦定理得。∴.选B。3、C【解析】
首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.4、C【解析】
集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,,不满足题意;故方程组有唯一的解.故.故选:C.【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.5、B【解析】
由函数的性质可得:的图像关于直线对称且关于轴对称,函数()的图像也关于对称,由函数图像的作法可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4得解.【详解】由偶函数满足,可得的图像关于直线对称且关于轴对称,函数()的图像也关于对称,函数的图像与函数()的图像的位置关系如图所示,可知两个图像有四个交点,且两两关于直线对称,则与的图像所有交点的横坐标之和为4.故选:B【点睛】本题主要考查了函数的性质,考查了数形结合的思想,掌握函数的性质是解题的关键,属于中档题.6、C【解析】
根据等差数列的性质设出,,,利用勾股定理列方程,结合椭圆的定义,求得.再利用勾股定理建立的关系式,化简后求得离心率.【详解】由已知,,成等差数列,设,,.由于,据勾股定理有,即,化简得;由椭圆定义知的周长为,有,所以,所以;在直角中,由勾股定理,,∴离心率.故选:C【点睛】本小题主要考查椭圆离心率的求法,考查椭圆的定义,考查等差数列的性质,属于中档题.7、A【解析】
根据三视图,还原空间几何体,即可得该几何体的体积.【详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4,故.故选:A【点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.8、C【解析】
根据程序框图程序运算即可得.【详解】依程序运算可得:,故选:C【点睛】本题主要考查了程序框图的计算,解题的关键是理解程序框图运行的过程.9、B【解析】
试题分析:由程序框图可知,框图统计的是成绩不小于80和成绩不小于60且小于80的人数,由茎叶图可知,成绩不小于80的有12个,成绩不小于60且小于80的有26个,故,.考点:程序框图、茎叶图.10、D【解析】
依题意,设,由,得,再一一验证.【详解】设,因为,所以,经验证不满足,故选:D.【点睛】本题主要考查了复数的概念、复数的几何意义,还考查了推理论证能力,属于基础题.11、D【解析】
对函数求导,根据函数在时取得极值,得到,即可求出结果.【详解】因为,所以,又函数在时取得极值,所以,解得.故选D【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.12、A【解析】
利用韦达定理可得,,结合可推出,再计算出,,从而推出①正确;再利用递推公式依次计算数列中的各项,以此判断②的正误.【详解】因为,是方程的两个不等实数根,所以,,因为,所以,即当时,数列中的任一项都等于其前两项之和,又,,所以,,,以此类推,即可知数列的任意一项都是正整数,故①正确;若数列存在某一项是5的倍数,则此项个位数字应当为0或5,由,,依次计算可知,数列中各项的个位数字以1,3,4,7,1,8,9,7,6,3,9,2为周期,故数列中不存在个位数字为0或5的项,故②错误;故选:A.【点睛】本题主要考查数列递推公式的推导,考查数列性质的应用,考查学生的综合分析以及计算能力.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】
由题得,再根据求解即可.【详解】双曲线的两条渐近线为,可令,,则,所以,解得.故答案为:2.【点睛】本题考查双曲线渐近线求离心率的问题.属于基础题.14、【解析】初始条件成立方;运行第一次:成立;运行第二次:不成立;输出的值:结束所以答案应填:考点:1、程序框图;2、定积分.15、36;1.【解析】
的可能取值为0,1,2,3,对应的排法有:.分别求出,,,,由此能求出.【详解】解:有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则的可能取值为0,1,2,3,对应的排法有:.∴对应的排法有36种;,,,,∴故答案为:36;1.【点睛】本题考查了排列、组合的应用,离散型随机变量的分布列以及数学期望,属于中档题.16、【解析】
通过双曲线的标准方程,求解,,即可得到所求的结果.【详解】由双曲线,可得,,则,所以双曲线的焦点坐标是,渐近线方程为:.故答案为:;.【点睛】本题主要考查了双曲线的简单性质的应用,考查了运算能力,属于容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的极坐标方程为,普通方程为;(2)【解析】
(1)根据三角函数恒等变换可得,,可得曲线的普通方程,再运用图像的平移得依题意得曲线的普通方程为,利用极坐标与平面直角坐标互化的公式可得方程;(2)法一:将代入曲线的极坐标方程得,运用韦达定理可得,根据,可求得的范围;法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得,运用韦达定理可得,根据,可求得的范围;【详解】(1),,即曲线的普通方程为,依题意得曲线的普通方程为,令,得曲线的极坐标方程为;(2)法一:将代入曲线的极坐标方程得,则,,,异号,,,;法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得,则,,,异号,,.【点睛】本题考查参数方程与普通方程,极坐标方程与平面直角坐标方程之间的转化,求解几何量的取值范围,关键在于明确极坐标系中极径和极角的几何含义,直线的参数方程,参数的几何意义,属于中档题.18、(1)B(2)【解析】
(1)由已知结合余弦定理,正弦定理及和两角和的正弦公式进行化简可求cosB,进而可求B;(2)由已知结合正弦定理,余弦定理及基本不等式即可求解ac的范围,然后结合三角形的面积公式即可求解.【详解】(1)因为b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因为,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因为a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,当且仅当a=c时取等号,即ac的最大值4,所以△ABC面积S即面积的最大值.【点睛】本题综合考查了正弦定理,余弦定理及三角形的面积公式在求解三角形中的应用,属于中档题.19、(Ⅰ),曲线是以为圆心,为半径的圆;(Ⅱ).【解析】
(Ⅰ)由曲线的参数方程能求出曲线的普通方程,由此能求出曲线的极坐标方程.(Ⅱ)令,,则,利用诱导公式及二倍角公式化简,再由余弦函数的性质求出面积的取值范围;【详解】解:(Ⅰ)由(为参数)化为普通方程为,整理得曲线是以为圆心,为半径的圆.(Ⅱ)令,,,,面积的取值范围为【点睛】本题考查曲线的极坐标方程的求法,考查三角形的面积的求法,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,属于中档题.20、(1)(2)【解析】
(1)首先将参数方程转化为普通方程再根据公式化为极坐标方程即可;(2)设,,由,即可求出,则计算可得;【详解】解:(1)圆的参数方程(为参数)可化为,∴,即圆的极坐标方程为.(2)设,由,解得.设,由,解得.∵,∴.【点睛】本题考查了利用极坐标方程求曲线的交点弦长,考查了推理能力与计算能力,属于中档题.21、(1)(2)不存在;详见解析【解析】
(1)设,,,通过,即为的中点,转化求解,点的轨迹的方程.(2)设直线的方程为,先根据,可得,①,再根据韦达定理,点在椭圆上可得,②,将①代入②可得,该方程无解,问题得以解决【详解】(1)设,,则,,由题意知,所以为中点,由中点坐标公式得,即,又点在圆:上,故满足,得.曲线的方程.(2)由题意知直线的斜率存在且不为零,设直线的方程为,因为,故,即①,联立,消去得:,设,,,,,因为四边形为平行四边形,故,点在椭圆上,故,整理得②,将①代入②,得,该方程无解,故这样的直线不存在.【点睛】本题考查点的轨迹方程的求法、满足条件的点是否存在的判断与直线方程的求法,考查数学转化思想方法,是中档题.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024纳税担保合同范本:税务事项担保3篇
- 2024电力系统施工劳务分配具体协议范本版B版
- 2024物联网技术研发合同-构建智能生活
- 专业健身私教服务协议范本版B版
- 2024铁路货运货物运输保险代理服务合同3篇
- 专业个人咨询服务协议:2024收费标准版B版
- 2024投标书房地产开发合作协议范本3篇
- 2024酒店装修工程施工合同
- 2024年规范三轮车买卖合同合同版B版
- 上海大厦物业前期管理专项协议2024版版
- 2024年高标准农田建设土地承包服务协议3篇
- 阅读理解(专项训练)-2024-2025学年湘少版英语六年级上册
- 民用无人驾驶航空器产品标识要求
- 2024年医院产科工作计划例文(4篇)
- 2024-2025学年九年级英语上学期期末真题复习 专题09 单词拼写(安徽专用)
- 无创通气基本模式
- 江西省赣州市寻乌县2023-2024学年八年级上学期期末检测数学试卷(含解析)
- 2024年认证行业法律法规及认证基础知识 CCAA年度确认 试题与答案
- 2024年浙江省公务员考试结构化面试真题试题试卷答案解析
- 中国音乐史与名作赏析智慧树知到期末考试答案章节答案2024年山东师范大学
- 星巴克营销策划方案(共24页)
评论
0/150
提交评论