专题10 圆中的重要模型之阿基米德折弦(定理)模型、婆罗摩笈多(定理)模型解读与提分精练(北师大版)_第1页
专题10 圆中的重要模型之阿基米德折弦(定理)模型、婆罗摩笈多(定理)模型解读与提分精练(北师大版)_第2页
专题10 圆中的重要模型之阿基米德折弦(定理)模型、婆罗摩笈多(定理)模型解读与提分精练(北师大版)_第3页
专题10 圆中的重要模型之阿基米德折弦(定理)模型、婆罗摩笈多(定理)模型解读与提分精练(北师大版)_第4页
专题10 圆中的重要模型之阿基米德折弦(定理)模型、婆罗摩笈多(定理)模型解读与提分精练(北师大版)_第5页
已阅读5页,还剩17页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题10圆中的重要模型之阿基米德折弦(定理)模型、婆罗摩笈多(定理)模型圆在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就圆形中的重要模型(阿基米德折弦(定理)模型、婆罗摩笈多(布拉美古塔)(定理)模型)进行梳理及对应试题分析,方便掌握。TOC\o"1-4"\h\z\u 1模型1.阿基米德折弦模型 1模型2.圆中的“婆罗摩笈多”模型 10 16模型1.阿基米德折弦模型【模型解读】折弦:从圆周上任一点出发的两条弦,所组成的折线,我们称之为该图的一条折弦。一个圆中一条由两长度不同的弦组成的折弦所对的两段弧的中点在较长弦上的射影,就是折弦的中点。条件:如图1所示,AB和BC是⊙O的两条弦(即ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线之垂足D是折弦ABC的中点,结论:CD=AB+BD。图1图2图3图4证明:法1(垂线法):如图2,过点M作射线AB,垂足为点H,连接,AC;∵M是的中点,∴.∵,,∴.又∵,∴,∴,.∵,,∴.∴.∴.法2(截长法):如图3,在CD上截取DG=BD,连接BM,MC,MA,AC;∵BD=DG,MD⊥BG,∴MB=MG,∠MBG=∠MGB,∵M是的中点,∴∠MAC=∠MCA,∴MA=MC,∵∠CMG+∠MCG=∠MGB=∠MBG=∠MAC=∠MCA=∠ACB+∠MCG,∴∠CMG=∠ACB=∠AMB,∵MB=MG,MA=MC,∠BMA=∠GMC,∴△MBA≌△MGC(SAS),∴BA=GC,CD=AB+BD.法3(补短法):如图4,如图,延长DB至F,使BF=BA;连接MA、MB、MC、MF、AC,∵M是的中点,∴MA=MC,∠MAC=∠MCA,∵∠MBA=180°-∠MCA,∠MBF=180°-∠CBC=180°-∠MAC=180°-∠MCA,,∴∠MBA=∠MBF,在△MBF和△MBA中,,∴△MBF≌△MBA(SAS),∴MF=MA=MC,又∵MD⊥BC,∴FD=CD,∴DC=BF+BD=BA+BD;例1.(2024·广东·校考一模)定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB和BC组成圆的折弦,AB>BC,M是弧ABC的中点,MF⊥AB于F,则AF=FB+BC.如图2,△ABC中,∠ABC=60°,AB=8,BC=6,D是AB上一点,BD=1,作DE⊥AB交△ABC的外接圆于E,连接EA,则∠EAC=°.例2.(2023·广东九年级期中)如图,AB和BC是的两条弦(即ABC是圆的一条折弦),,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,若,,则CD的长为(

).A. B. C. D.例3.(2024·山西吕梁·模拟预测)请阅读下面材料,并完成相应的任务.阿基米德(,公元前287-公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.

阿基米德折弦定理:如图1,和是的两条弦(即折线是圆的一条折弦),.M是的中点,则从点M向所作垂线的垂足D是折弦的中点,即.

这个定理有很多证明方法,下面是运用“垂线法”证明的部分证明过程.证明:如图2,过点M作射线AB,垂足为点H,连接.∵M是的中点,∴.任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)如图3,已知等边三角形内接于,D为上一点,.于点E,,连接,求的周长.例4.(23-24九年级上·江苏连云港·期末)【问题呈现】阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.∵M是的中点,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根据证明过程,分别写出下列步骤的理由:①,②,③;【理解运用】如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是的中点,MD⊥BC于点D,则BD=;【变式探究】如图3,若点M是的中点,【问题呈现】中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.【实践应用】根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,求AD长.例5.(24-25九年级上·北京·期中)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知,C是弦AB上一点(1)尺规作图(保留作图痕迹,不写作法);①作线段的垂直平分线DE,交于点D,垂足为E;②以点D为圆心,长为半径作弧,交于点F(F,A两点不重合),连接.(2)引理的结论为:.证明:连接∵DE为的垂直平分线∴∴又∵四边形内接于圆∴(______)①(填推理的依据)又∵∴____________…②又∵∴____________…③∴∴∴.例6.(2024·河南商丘校考一模)阅读下面材料,完成相应的任务:阿基米德是有史以来最伟大的数学家之一、《阿基米德全集》收集了已发现的阿基米德著作,它对于了解古希腊数学,研究古希腊数学思想以及整个科技史都是十分宝贵的.其中论述了阿基米德折弦定理:从圆周上任一点出发的两条弦,所组成的折线,称之为该圆的一条折弦.一个圆中一条由两长度不同的弦组成的折弦所对的两段弧的中点在较长弦上的射影,就是折弦的中点.如图1,AB和BC是的两条弦(即ABC是圆的一条折弦),.M是弧的中点,则从M向所作垂线之垂足D是折弦的中点,即.小明认为可以利用“截长法”,如图2:在线段上从C点截取一段线段,连接.小丽认为可以利用“垂线法”,如图3:过点M作于点H,连接任务:(1)请你从小明和小丽的方法中任选一种证明思路,继续书写出证明过程,(2)就图3证明:.模型2.圆中的“婆罗摩笈多”模型婆罗摩笈多定理:如果一个圆内接四边形(即对角互补的四边形)的对角线互相垂直且相交,那么从交点向某一边所引垂线的反向延长线必经过这条边对边的中点(反之亦能成立)。1)婆罗摩笈多定理(古拉美古塔定理)条件:如图,四边形ABCD内接于,对角线,垂足为点M,直线,垂足为点E,并且交直线AD于点F.结论:.证明:∵,,∴,∴,,∴,∵,∴.又∵,∴,∴.在Rt△ADM中,∠ADM=90°,∴∠DMF=90°﹣∠AMF,∠ADM=90°﹣∠CAD,又∠AMF=∠CAD,∴∠DMF=∠ADM,∴FM=FD,∴AF=FD2)婆罗摩笈多定理(古拉美古塔定理)的逆定理条件:如图,四边形ABCD内接于⊙O,对角线AC⊥BD,垂足为M,F为AD上一点,直线FM交BC于点E,FA=FD.结论:FE⊥BC.证明:∵AF=FD,AC⊥BD,∴∠AMD=90°,∴AF=MF=FD,∴∠FMD=∠ADM,∵∠DAM+∠ADM=90°,∴∠FMD+∠DAM=90°,∵∠FMD=∠BME,∠DAM=∠DBC,∴∠DBC+∠BME=90°,∴∠MEB=90°,∴FE⊥BC.例1.(2024·河南·校考一模)阅读下列相关材料,并完成相应的任务.婆罗摩笈多是古印度著名的数学家、天文学家,他编著了《婆罗摩修正体系》,曾经提出了“婆罗摩笈多定理”,也称“布拉美古塔定理”.定理的内容是:“若圆内接四边形的对角线相互垂直,则垂直于一边且过对角线交点的直线将平分对边”.按图写出这个定理的已知和求证,并完成这个定理的证明过程;已知:________________________________________________________________________________,求证:________________________________________________________________________________,证明:________________________________________________________________________________.例2.(2024·重庆·校考一模)婆罗摩笈多(Brahmagupta)是古代印度著名数学家、天文学家,他在三角形、四边形、零和负数的算术运算规则、二次方程等方面均有建树,他曾经提出了“婆罗摩笈多定理”,该定理也称为“古拉美古塔定理”,该定理的内容及部分证明过程如下:古拉美古塔定理:如图①,四边形ABCD内接于,对角线,垂足为点M,直线,垂足为点E,并且交直线AD于点F.则.证明:∵,,∴,∴,,∴,∵,∴.又∵,∴,∴.…任务:(1)将上述证明过程补充完整;(2)古拉美古塔定理的逆命题:如图②,四边形ABCD内接于,对角线,垂足为点M,直线FM交BC于点E,交AD于点F.若,则.请证明该命题.例3.(2024·山西太原·三模)请阅读下面的材料,并解答问题.婆罗摩笈多(Brahmagupta)约公元598年生,约660年卒,在数学、天文学方面有所成就,他编著了《婆罗摩修正体系》《肯达克迪迦》,婆罗摩笈多的一些数学成就在世界数学史上有较高的地位,其中有著名的婆罗摩笈多定理.婆罗摩笈多定理:圆的内接四边形的对角线与垂直相交于M,过点M的直线与边分别相交于点F、E.则有下两个结论:如果,那么;如果,那么.数学课上,赵老师带领大家对该定理的第一条进行了探究.证明:,,即,,,在中,,……请解答以下问题:(1)请完成所给材料的证明过程;(2)请证明结论(2);(3)应用:如图圆O中,半径为4,A,B,C,D为圆上的点,,连接交于点F,过点F作于E,延长交于G,则的长度为______.1.(2023·浙江温州·九年级校考阶段练习)阿基米德是古希腊最伟大的数学家之一,他曾用图1发现了阿基米德折弦定理.如图2,已知BC为⊙O的直径,AB为一条弦(BCAB),点M是上的点,MD⊥BC于点D,延长MD交弦AB于点E,连接BM,若BM=,AB=4,则AE的长为(

)A. B. C. D.2.(23-24九年级上·河南漯河·期末)定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.如图,和组成圆的折弦,,是的中点,于,则下列结论一定成立的是(

)A.B.C.D.3.(23-24九年级上·浙江温州·期中)婆罗摩芨多是公元7世纪古印度伟大的数学家,他研究过对角线互相垂直的圆内接四边形,我们把这类四边形称为“婆氏四边形”.如图,在中,四边形是“婆氏四边形”,对角线相交于点E,过点E作于点H,延长交于点F,则的值为(

)A. B. C. D.4.(23-24九年级下·江西南昌·期末)婆罗摩笈多是公元7世纪的古印度伟大数学家,曾研究对角线互相垂直的圆内接四边形,我们把这类四边形称为“婆罗摩笈多四边形”.如图,四边形是的内接四边形,且是“婆罗摩笈多四边形”、若,则的半径为.

5.(23-24九年级上·湖北武汉·期末)古代数学家阿基米德曾经提出一个定理:一个圆中一条由两条长度不同的弦组成的折弦所对的两段弧的中点在较长弦上的射影,就是折弦的中点.如图(1),弦,是的一条折弦,点是的中点,过点作于,则.根据这个定理解决问题:如图(2),边长为的等边内接于,点为优弧上的一点.,则的周长是.6.(2023·重庆·统考一模)阅读下列相关材料,并完成相应的任务.婆罗摩笈多是古印度著名的数学家、天文学家,他编著了《婆罗摩修正体系》,他曾经提出了“婆罗摩笈多定理”,也称“布拉美古塔定理”.定理的内容是:“若圆内接四边形的对角线互相垂直,则垂直于一边且过对角线交点的直线平分对边”.任务:(1)按图(1)写出了这个定理的已知和求证,并完成这个定理的证明过程;已知:__________________求证:_________________证明:(2)如图(2),在中,弦于M,连接分别是上的点,于于H,当M是中点时,直接写出四边形是怎样的特殊四边形:__________.7.(23-24九年级上·山西大同·期末)请阅读下列材料,并完成相应的任务:斯库顿定理:如图1.在中,为的平分线,则.下面是该定理的证明过程:证明:如图2,是的外接圆,延长交于点,连接.∵为的平分线,∴.∵,(依据①__________________________).(依据②_________________________)又,..……任务:(1)证明过程中的依据是:①__________________________________.②__________________________________.(2)将证明过程补充完整:(3)如图3.在圆内接四边形中,对角线,相交于点.若,,,,,请利用斯库顿定理,直接写出线段的长.8.(23-24九年级上·浙江湖州·期末)【概念认识】定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)如图1,已知在垂等四边形中,对角线与交于点,若,cm,,求的长度,【数学理解】(2)在探究如何画“圆内接垂等四边形”的活动中,小李与同学讨论出了如下方法:如图2,在中,已知是的弦,只需作,,分别交于点和点,即可得到垂等四边形,请你写出证明过程.【问题解决】(3)如图3,已知是上一定点,为上一动点,以为一边作出的内接垂等四边形(、不重合且、、三点不共线),对角线与交于点,的半径为,当点到的距离为时,求弦的长度.9.(23-24湖南长沙九年级月考)婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的运算规则,二次方程等方面均有建树,他也研究过对角线互相垂直的圆内接四边形,我们把这类对角线互相垂直的圆内接四边形称为“婆氏四边形”.(1)若平行四边形ABCD是“婆氏四边形”,则四边形ABCD是.(填序号)①矩形;②菱形;③正方形(2)如图1,RtABC中,∠BAC=90°,以AB为弦的⊙O交AC于D,交BC于E,连接DE、AE、BD,AB=6,,若四边形ABED是“婆氏四边形”,求DE的长.(3)如图2,四边形ABCD为⊙O的内接四边形,连接AC,BD,OA,OB,OC,OD,已知∠BOC+∠AOD=180°.①求证:四边形ABCD是“婆氏四边形”;②当AD+BC=4时,求⊙O半径的最小值.10.(2024·湖南长沙·模拟预测)如图1所示,A、B、C、D四点在上逆时针顺序分布,且满足.(1)求证:点A到两边的距离相等;(2)如图2,已知与相交于点,为的直径.若,,求的长.(3)已知,与相交于点,直线与直线相交于圆外一点G,若线段为的一条高,试求:的最小值.11.(2023·江苏淮安·三模)定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点与该边所对顶点连线长度的平方,则称这个点为三角形该边的“平方点”.如图1,中,点E是边上一点,连接,若,则称点E是中边上的“平方点”.

(1)如图2,已知,在四边形中,平分于点E,,求证:点E是中边上的“平方点”;(2)如图3,是的内接三角形,点E是中边上的“平方点”,若,求的值;(3)在,,点E是边上的“平方点”,直接写出线段的长为______.12.(2024·河南安阳·校考一模)阅读下列材料,并完成相应的任务.西姆松定理是一个平面几何定理,其表述为:过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线的垂线,则三垂足共线(此线常称为西姆松线).某数学兴趣小组的同学们尝试证明该定理.如图(1),已知内接于,点P在上(不与点A,B,C重合),过点P分别作,,的垂线,垂足分别为.点D,E,F求证:点D,E,F在同一条直线上.如下是他们的证明过程(不完整):如图(1),连接,,,,取的中点Q,连接,,则,(依据1)∴点E,F,P,C四点共圆,∴.(依据2)又∵,∴.同上可得点B,D,P,E四点共圆,……任务:(1)填空:①依据1指的是中点的定义及________;②依据2指的是________.(2)请将证明过程补充完整.(3)善于思考的小虎发现当点P是的中点时,,请你利用图(2)证明该结论的正确性.13.(2024·浙江·九年级专题练习)如图中所示,AB和BC组成圆的折弦,AB>BC,D是的中点,DE⊥AB,垂足为E.连结AD,AC,BD.(1)写出所有与∠DBA相等的角(不添加任何线段)__________.(2)判断AE,BE,BC之间的数量关系并证明.(3)如图,已知AD=7,BD=3,求AB·BC的值.14.(23-24九年级上·吉林长春·期中)有关阿基米德折弦定理的探讨与应用【问题呈现】(1)阿基米德折弦定理:如图①,和是的两条弦(即折线是圆的一条折弦),,点M是的中点,则从点M向作垂线,垂足D是折弦的中点,即.

下面是运用“截长法”证明的部分证明过程.证明:如图②,在上截取,连接、、和.∵M是的中点,.……请按照上面的证明思路,写出该证明的剩余部分.【理解运用】(2)如图③,内接于,过点O作于点D,延长交于点E,过点E作于点F.若,,则的长为______.【实践应用】(3)如图④,等边内接于,点D是上一点,且,连接.若,则的周长为______.15.(22-23九年级上·山西阳泉·期末)请阅读下列材料,并完成相应的任务:

阿基米德折弦定理阿基米德(Archimedes,公元前~公元前年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Biruni(年~年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了像文版《阿基米德全集》,第一题就是阿基米德的折弦定理.阿基米德折弦定理:如图1,和是的两条弦(即折线是固的一条折弦),,是弧的中点,则从向所作垂线的垂足是折弦的中点,即.这个定理有根多证明方法,下面是运用“垂线法”证明的部分证明过程.证明:如图2.作射线,垂足为,连接,,.∵是弧的中点,∴.…

任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图3,已知等边内接于,为上一点,,于点,,则折弦的长是______.

16.(23-24九年级上·河南周口·期末)问题呈现:阿基米德折弦定理:如图,和是的两条弦(即折线是弦的一条折弦),,是弧的中点,则从向所作垂线的垂足是折弦的中点,即,下面是运用“截长法”证明的部分证明过程证明:如图2,在上截取,连接,,和是弧的中点,∴,……(1)请按照上面的证明思路,写出该证明的剩余部分;(2)实践应用:如图3,内接于,,是弧的中点,于点,依据阿基米德折弦定理可得图中某三条线段的等量关系为______.(3)如图4,等腰内接于,,为弧上一点,连接,,,,求的周长.17.(23-24·江苏扬州·九年级校联考阶段练习)我们知道,如图1,AB是⊙O的弦,点F是的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.18.(23-24·江苏·九年级期中)小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究.(1)更换定理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论