第06讲 圆(原卷版)_第1页
第06讲 圆(原卷版)_第2页
第06讲 圆(原卷版)_第3页
第06讲 圆(原卷版)_第4页
第06讲 圆(原卷版)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第06讲圆【知识梳理】一.圆的认识(1)圆的定义定义①:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆,记作“⊙O”,读作“圆O”.定义②:圆可以看做是所有到定点O的距离等于定长r的点的集合.(2)与圆有关的概念弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等.连接圆上任意两点的线段叫弦,经过圆心的弦叫直径,圆上任意两点间的部分叫圆弧,简称弧,圆的任意一条直径的两个端点把圆分成两条弧,每条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.(3)圆的基本性质:①轴对称性.②中心对称性.二.点与圆的位置关系(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r②点P在圆上⇔d=r①点P在圆内⇔d<r(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.三.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.四.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)概念说明:①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.③找一个三角形的外心,就是找一个三角形的三条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.【考点剖析】一.圆的认识(共4小题)1.(2022秋•海曙区期中)如图,△ABC中,∠ACB=90°,∠A=40°,以C为圆心、CB为半径的圆交AB于点D,则∠ACD=度.2.(2022秋•下城区校级月考)下列说法正确的是()A.直径是圆中最长的弦,有4条 B.长度相等的弧是等弧 C.如果⊙A的周长是⊙B周长的4倍,那么⊙A的面积是⊙B面积的8倍 D.已知⊙O的半径为8,A为平面内的一点,且OA=8,那么点A在⊙O上3.(2022秋•东阳市月考)由所有到已知点O的距离大于或等于1,并且小于或等于2的点组成的图形的面积为()A.π B.2π C.3π D.4π4.(2022秋•椒江区校级月考)下列图形为圆的是()A. B. C. D.二.点与圆的位置关系(共7小题)5.(2022秋•上城区期末)已知⊙O的面积为25π,若PO=5.5,则点P在.6.(2022秋•诸暨市期末)点P到圆O的距离为6,若点P在圆O外,则圆O的半径r满足()A.0<r<6 B.0<r≤6 C.r>6 D.r≥67.(2022秋•拱墅区校级期中)若⊙O的半径为5cm,平面上有一点A,OA=6cm,则点A与⊙O的位置关系是点A在⊙O(填“内、上、外”)8.(2022秋•鹿城区校级月考)如图,在6×6的正方形网格中(小正方形的边长为1),有5个点,M,N,O,P,Q,以O为圆心,为半径作圆,则在⊙O外的点是()A.M B.N C.P D.Q9.(2023•绍兴模拟)已知点P(x0,y0)和直线y=kx+b,求点P到直线y=kx+b的距离d可用公式d=计算.根据以上材料解决下面问题:如图,⊙C的圆心C的坐标为(1,1),半径为1,直线l的表达式为y=﹣2x+6,P是直线l上的动点,Q是⊙C上的动点,则PQ的最小值是.10.(2023•平湖市一模)平面直角坐标系xOy中,⊙O的半径为2,点M在⊙O上,点N在线段OM上,设ON=t(1<t<2),点P的坐标为(﹣4,0).将点P沿OM方向平移2个单位,得到点P',再将点P'作关于点N的对称点Q,连接PQ.当点M在⊙O上运动时,PQ长度的最大值与最小值的差为.(用含t的式子表示)11.(2022秋•柯桥区月考)如图,在平面直角坐标系中,A、B、C是⊙M上的三个点,A(0,4)、B(4,4)、C(6,2).(1)圆心M的坐标为;(2)判断点D(4,﹣3)与⊙M的位置关系.三.确定圆的条件(共4小题)12.(2022秋•永康市校级月考)小明不慎把家里的圆形镜子打碎了,其中四块碎片如图所示,为了配到与原来大小一样的圆形镜子,小明带到商店去的一块碎片应该是()A.第一块 B.第二块 C.第三块 D.第四块13.(2022•江岸区模拟)如图,已知平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P经过点A、B、C,则点P的坐标为()A.(6,8) B.(4,5) C.(4,) D.(4,)14.(2022秋•西湖区校级月考)平面直角坐标系内的三个点A(1,0)、B(0,﹣3)、C(2,﹣3)确定一个圆(填“能”或“不能”).15.(2021秋•秀洲区校级期中)将图中的破轮子复原,已知弧上三点A,B,C.(1)画出该轮的圆心;(2)若△ABC是等腰三角形,底边BC=16cm,腰AB=10cm,求圆片的半径R.四.三角形的外接圆与外心(共7小题)16.(2022秋•西湖区校级月考)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为2cm,若点P是⊙O上的一点,PB=AB,则PA的长为()A.2cm B.2cm C.cm D.2cm17.(2022秋•越城区期末)已知直角三角形两条直角边为3,4,则它的外接圆半径为()A.1.5 B.2 C.2.5 D.518.(2023•滨江区校级模拟)如图,在每个小正方形边长都为1的5×5网格中,有四个点A,B,C,D,以其中任意三点为顶点的三角形的外接圆半径长是.19.(2022•海曙区校级开学)已知:如图,圆O是△ABC的外接圆,AO平分∠BAC.(1)求证:△ABC是等腰三角形;(2)当OA=4,AB=6,求边BC的长.20.(2022秋•莲都区期中)如图所示,在△ABC中,AB=AC,⊙O是△ABC的外接圆,BO的延长线交边AC于点D.(1)若∠ACB=60°,BC=8,求⊙O的半径;(2)当△BCD是等腰三角形时,求∠BCD的大小.21.(2022秋•西湖区校级月考)如图,△ABC内接于⊙O,高AD经过圆心O.(1)求证:AB=AC;(2)若BC=8,⊙O的半径为5,求△ABC的面积.22.(2022•鄞州区校级开学)如图所示,已知A,B两点的坐标分别为(2,0),(0,2),点P是△AOB外接圆上一点,且∠AOP=45°,OP与AB交于C点.(1)求∠BAO的度数;(2)求OC及AC的长;(3)求OP的长及点P的坐标.

【过关检测】一、单选题1.(2022秋·浙江台州·九年级统考期末)已知点A在半径为2cm的圆内,则点A到圆心的距离可能是(

)A.1cm B.2cm C.3cm D.4cm2.(2023秋·浙江·九年级期末)已知点P到圆心O的距离为3,若点P在圆外,则的半径可能为(

)A.2 B.3 C.4 D.53.(2022秋·浙江·九年级专题练习)、是半径为的上两个不同的点,则弦的取值范围是(

)A. B. C. D.4.(2022·浙江·九年级专题练习)已知M(1,2),N(3,﹣3),P(x,y)三点可以确定一个圆,则以下P点坐标不满足要求的是(

)A.(3,5) B.(﹣3,5) C.(1,2) D.(1,﹣2)5.(2022秋·浙江金华·九年级义乌市绣湖中学教育集团校考阶段练习)的外心在三角形的一边上,则是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法判断6.(2023秋·浙江绍兴·九年级统考期末)已知直角三角形两条直角边为3,4,则它的外接圆半径为(

)A.1.5 B.2 C.2.5 D.57.(2023·浙江·模拟预测)如图,是的外接圆,则点O是的(

)A.三条高线的交点 B.三条边的垂直平分线的交点C.三条中线的交点 D.三角形三内角角平分线的交点8.(2023春·浙江·九年级开学考试)下列命题中,是真命题的是(

)A.长度相等的两条弧是等弧B.顺次连接平行四边形四边中点所组成的图形是菱形C.正八边形既是轴对称图形又是中心对称图形D.三角形的内心到这个三角形三个顶点的距离相等9.(2020秋·浙江温州·九年级期末)已知点是数轴上一定点,点是数轴上一动点,点表示的实数为,点所表示的实数为,作以为圆心,为半径的,若点在外,则的值可能是().A. B. C. D.10.(2022秋·浙江绍兴·九年级校联考期中)如图,在中,,,,是斜边上的中线,以为直径作,设线段的中点为P,则点P与的位置关系是(

)A.点P在内 B.点P在上C.点P在外 D.点P不在内二、填空题11.(2022秋·九年级单元测试)下列说法中正确的有__(填序号).(1)直径是圆中最大的弦;(2)长度相等的两条弧一定是等弧;(3)半径相等的两个圆是等圆;(4)面积相等的两个圆是等圆;(5)同一条弦所对的两条弧一定是等弧.12.(2022秋·九年级单元测试)如图,在平面直角坐标系中,点,,的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为_______.13.(2023春·浙江·九年级专题练习)如图,点A,B的坐标分别为,C为坐标平面内一点,,点M为线段的中点,连接的最大值为_____.14.(2023·浙江绍兴·统考一模)如图,在菱形中,,,延长至点,使,现以点为圆心,以为半经画弧,与直线交于点,则的长为______.15.(2022秋·浙江绍兴·九年级统考期末)如图,在中,,,以点B为圆心,长为半径作弧,交直线于点P,连结,则的度数是______.16.(2023春·浙江·九年级阶段练习)如图,点A,B,C在⊙O上,,,则_____.17.(2023·浙江台州·统考一模)如图,是半圆O的直径,P是上的动点,交半圆于点C,已知,则的最大值是______.

18.(2021秋·浙江金华·九年级统考期中)如图所示,在平面直角坐标系xOy中,点P是钝角的外心,点A、B、P的坐标分别为,,,若第一象限的点C横坐标、纵坐标均为整数,则点C的坐标为______.三、解答题19.(2022秋·浙江杭州·九年级校考阶段练习)如图,是的直径,,交于点,且,求弧的度数.20.(2022秋·浙江温州·九年级校考阶段练习)以下各图均是由边长为1的小正方形组成的3×3网格,的顶点均在格点上.利用网格和无刻度的直尺作图,保留痕迹,不写作法.(1)在图①中,作出的重心G.(2)在图②中,作出的外心O.21.(2022秋·浙江绍兴·九年级统考期中)在88的方格中,已知的各顶点都在格点上(1)如图,请仅用一把无刻度的直尺按要求作图(请直接用黑色字迹的钢笔或签字笔作图,不要求写作法).找出外接圆的圆心.(2)若,试求的半径.22.(2023秋·浙江台州·九年级统考期末)如图,是由边长为1的小正方形构成的6×6网格,每个小正方形的顶点叫做格点,经过A、B、C、D四个格点,仅用无刻度的直尺在给定的网格中按要求画图(画图过程中起辅助作用的用虚线表示,画图结果用实线表示,并用黑色水笔描黑)(1)如图1,判断圆心O______(填“是”或“不是”)在格点上,并在图1中标出格点O;(2)在图1中画出的切线(G为格点);(3)在图2中画出的中点E;23.(2022秋·浙江宁波·九年级统考期中)如图,在的方格中,的顶点均在格点上.请按要求画格点线段EF(端点在格点上),且EF分别交线段AB,AC于点G,H.(1)在图1中作出∠AHG=∠C.(2)在图2中作出∠AGH=∠C.24.(2021秋·浙江绍兴·九年级新昌县七星中学校考期中)如图,已知抛物线与x轴正半轴交于点,与y轴交于点,点P是线段上一动点,过点P作x轴的垂线交抛物线于点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论