版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省昭通市大关县第二中学高三下学期一模考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线,点是直线上任意一点,若圆与双曲线的右支没有公共点,则双曲线的离心率取值范围是().A. B. C. D.2.某市政府决定派遣名干部(男女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少人,且女干部不能单独成组,则不同的派遣方案共有()种A. B. C. D.3.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为()A.3 B. C.4 D.4.若双曲线的一条渐近线与圆至多有一个交点,则双曲线的离心率的取值范围是()A. B. C. D.5.已知函数有两个不同的极值点,,若不等式有解,则的取值范围是()A. B.C. D.6.在直三棱柱中,己知,,,则异面直线与所成的角为()A. B. C. D.7.已知抛物线上一点到焦点的距离为,分别为抛物线与圆上的动点,则的最小值为()A. B. C. D.8.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A.48 B.72 C.90 D.969.复数的虚部是()A. B. C. D.10.已知集合,则集合()A. B. C. D.11.设直线的方程为,圆的方程为,若直线被圆所截得的弦长为,则实数的取值为A.或11 B.或11 C. D.12.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则下述四个结论:①②③④点为函数的一个对称中心其中所有正确结论的编号是()A.①②③ B.①③④ C.①②④ D.②③④二、填空题:本题共4小题,每小题5分,共20分。13.已知函数为偶函数,则_____.14.已知实数a,b,c满足,则的最小值是______.15.已知向量,,若向量与向量平行,则实数___________.16.展开式中的系数为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)函数(1)证明:;(2)若存在,且,使得成立,求取值范围.18.(12分)在中,角,,的对边分别为,,,已知.(1)若,,成等差数列,求的值;(2)是否存在满足为直角?若存在,求的值;若不存在,请说明理由.19.(12分)在直角坐标系中,曲线的参数方程为(为参数,以坐标原点为极点,轴的正半轴为极轴,取相同长度单位建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的普通方程;(2)设射线与曲线交于不同于极点的点,与曲线交于不同于极点的点,求线段的长.20.(12分)如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)求二面角的余弦值.21.(12分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)从该地区城镇居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为,若用样本的频率作为概率,求随机变量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82822.(10分)在中,角的对边分别为,已知.(1)求角的大小;(2)若,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
先求出双曲线的渐近线方程,可得则直线与直线的距离,根据圆与双曲线的右支没有公共点,可得,解得即可.【详解】由题意,双曲线的一条渐近线方程为,即,∵是直线上任意一点,则直线与直线的距离,∵圆与双曲线的右支没有公共点,则,∴,即,又故的取值范围为,故选:B.【点睛】本题主要考查了直线和双曲线的位置关系,以及两平行线间的距离公式,其中解答中根据圆与双曲线的右支没有公共点得出是解答的关键,着重考查了推理与运算能力,属于基础题.2、C【解析】
在所有两组至少都是人的分组中减去名女干部单独成一组的情况,再将这两组分配,利用分步乘法计数原理可得出结果.【详解】两组至少都是人,则分组中两组的人数分别为、或、,
又因为名女干部不能单独成一组,则不同的派遣方案种数为.故选:C.【点睛】本题考查排列组合的综合问题,涉及分组分配问题,考查计算能力,属于中等题.3、B【解析】
先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【详解】由题意可知:,所以,,所以,所以,又因为,所以,所以.故选:B.【点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.4、C【解析】
求得双曲线的渐近线方程,可得圆心到渐近线的距离,由点到直线的距离公式可得的范围,再由离心率公式计算即可得到所求范围.【详解】双曲线的一条渐近线为,即,由题意知,直线与圆相切或相离,则,解得,因此,双曲线的离心率.故选:C.【点睛】本题考查双曲线的离心率的范围,注意运用圆心到渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题.5、C【解析】
先求导得(),由于函数有两个不同的极值点,,转化为方程有两个不相等的正实数根,根据,,,求出的取值范围,而有解,通过分裂参数法和构造新函数,通过利用导数研究单调性、最值,即可得出的取值范围.【详解】由题可得:(),因为函数有两个不同的极值点,,所以方程有两个不相等的正实数根,于是有解得.若不等式有解,所以因为.设,,故在上单调递增,故,所以,所以的取值范围是.故选:C.【点睛】本题考查利用导数研究函数单调性、最值来求参数取值范围,以及运用分离参数法和构造函数法,还考查分析和计算能力,有一定的难度.6、C【解析】
由条件可看出,则为异面直线与所成的角,可证得三角形中,,解得从而得出异面直线与所成的角.【详解】连接,,如图:又,则为异面直线与所成的角.因为且三棱柱为直三棱柱,∴∴面,∴,又,,∴,∴,解得.故选C【点睛】考查直三棱柱的定义,线面垂直的性质,考查了异面直线所成角的概念及求法,考查了逻辑推理能力,属于基础题.7、D【解析】
利用抛物线的定义,求得p的值,由利用两点间距离公式求得,根据二次函数的性质,求得,由取得最小值为,求得结果.【详解】由抛物线焦点在轴上,准线方程,则点到焦点的距离为,则,所以抛物线方程:,设,圆,圆心为,半径为1,则,当时,取得最小值,最小值为,故选D.【点睛】该题考查的是有关距离的最小值问题,涉及到的知识点有抛物线的定义,点到圆上的点的距离的最小值为其到圆心的距离减半径,二次函数的最小值,属于中档题目.8、D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛①当甲参加另外3场比赛时,共有•=72种选择方案;②当甲学生不参加任何比赛时,共有=24种选择方案.综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题.9、C【解析】因为,所以的虚部是,故选C.10、D【解析】
弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【详解】因,所以,故,又,,则,故集合.故选:D.【点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.11、A【解析】
圆的圆心坐标为(1,1),该圆心到直线的距离,结合弦长公式得,解得或,故选A.12、B【解析】
首先根据三角函数的平移规则表示出,再根据对称性求出、,即可求出的解析式,从而验证可得;【详解】解:由题意可得,又∵和的图象都关于对称,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正确,②错误.故选:B【点睛】本题考查三角函数的性质的应用,三角函数的变换规则,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据偶函数的定义列方程,化简求得的值.【详解】由于为偶函数,所以,即,即,即,即,即,即,即,所以.故答案为:【点睛】本小题主要考查根据函数的奇偶性求参数,考查运算求解能力,属于中档题.14、【解析】
先分离出,应用基本不等式转化为关于c的二次函数,进而求出最小值.【详解】解:若取最小值,则异号,,根据题意得:,又由,即有,则,即的最小值为,故答案为:【点睛】本题考查了基本不等式以及二次函数配方求最值,属于中档题.15、【解析】
由题可得,因为向量与向量平行,所以,解得.16、【解析】
变换,根据二项式定理计算得到答案.【详解】的展开式的通项为:,,取和,计算得到系数为:.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见详解;(2)或或【解析】
(1)(2)首先用基本不等式得到,然后解出不等式即可【详解】(1)因为所以(2)当时所以当且仅当即时等号成立因为存在,且,使得成立所以所以或解得:或或【点睛】1.要熟练掌握绝对值的三角不等式,即2.应用基本不等式求最值时要满足“一正二定三相等”.18、见解析【解析】
(1)因为,,成等差数列,所以,由余弦定理可得,因为,所以,即,所以.(2)若B为直角,则,,由及正弦定理可得,所以,即,上式两边同时平方,可得,所以(*).又,所以,,所以,与(*)矛盾,所以不存在满足为直角.19、(1);(2)【解析】
曲线的参数方程转换为直角坐标方程为.再用极直互化公式求解,曲线的极坐标方程用极直互化公式转换为直角坐标方程.射线与曲线的极坐标方程联解求出,射线与曲线的极坐标方程联解求出,再用得解【详解】解:曲线的参数方程为(为参数,转换为直角坐标方程为.把,代入得:曲线的极坐标方程为.转换为直角坐标方程为.设射线与曲线交于不同于极点的点,所以,解得.与曲线交于不同于极点的点,所以,解得,所以【点睛】本题考查参数方程、极坐标方程直角坐标方程相互转换及极坐标下利用和的几何意义求线段的长.(1)直角坐标方程化为极坐标方程只需将直角坐标方程中的分别用,代替即可得到相应极坐标方程.参数方程化为极坐标方程必须先化成直角坐标方程再转化为极坐标方程.(2)直接求解,能达到化繁为简的解题目的;如果几何关系不容易通过极坐标表示时,可以先化为直角坐标方程,将不熟悉的问题转化为熟悉的问题加以解决.20、(1)证明见解析(2)【解析】
(1)连接交于点,由三角形中位线定理得,由此能证明平面.(2)以为坐标原点,的方向为轴正方向,的方向为轴正方向,的方向为轴正方向,建立空间直角坐标系.分别求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.【详解】证明:证明:连接交于点,则为的中点.又是的中点,连接,则.因为平面,平面,所以平面.(2)由,可得:,即所以又因为直棱柱,所以以点为坐标原点,分别以直线为轴、轴、轴,建立空间直角坐标系,则,设平面的法向量为,则且,可解得,令,得平面的一个法向量为,同理可得平面的一个法向量为,则所以二面角的余弦值为.【点睛】本题主要考查直线与平面平行、二面角的概念、求法等知识,考查空间想象能力和逻辑推理能力,属于中档题.21、(1)见解析,有99%的把握认为经常阅读与居民居住地有关.(2)【解析】
(1)根据题意填写列联表,利用公式求出,比较与6.635的大小得结论;(2)由样本数据可得经常阅读的人的概率是,则,根据二项分布的期望公式计算可得;【详解】解:(1)由题意可得:城镇居民农村居民合计经常阅读10030130不经常阅读403070合计14060200则,所以有99%的把握认为经常阅读与居民居住地有关.(2)根据样本估计,从该地区城镇居民中随机抽取1人,抽到经常阅读的人的概率是,且,所以随机变量的期望为.【点睛】本题考查独立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 益元散中药成分分析-洞察分析
- 响应式认证系统设计-洞察分析
- 药物相互作用-洞察分析
- 移动安全防护研究-洞察分析
- 溯源链与建筑信用体系-洞察分析
- 匠心筑梦技能报国三分钟演讲稿(7篇)
- 冬春森林防火方案(9篇)
- 文化遗产法政策体系构建-洞察分析
- 网络隐私政策优化-洞察分析
- 十佳师德师风标兵事迹材料(6篇)
- TCECA-G 0171-2022 零碳工厂评价规范
- 董事会战略委员会工作细则
- ppt模板:青团团委团课动态ppt模板课件
- 实训报告---配置-Hyper-V-服务实训
- 2022年江苏省卫生系统事业单位招聘考试(临床)参考题库汇总(含答案)
- 场发射扫描电镜介绍
- 啤酒游戏(完全操作版)
- 变更户主情况登记表
- 新供应商开发流程图
- 久其报表软件基本操作流程(Word)
- (完整版)(VC)风险投资协议
评论
0/150
提交评论