陕西省西安市西电附中2025届高三下第一次测试数学试题含解析_第1页
陕西省西安市西电附中2025届高三下第一次测试数学试题含解析_第2页
陕西省西安市西电附中2025届高三下第一次测试数学试题含解析_第3页
陕西省西安市西电附中2025届高三下第一次测试数学试题含解析_第4页
陕西省西安市西电附中2025届高三下第一次测试数学试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市西电附中2025届高三下第一次测试数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的对称轴不可能为()A. B. C. D.2.已知的垂心为,且是的中点,则()A.14 B.12 C.10 D.83.下列结论中正确的个数是()①已知函数是一次函数,若数列通项公式为,则该数列是等差数列;②若直线上有两个不同的点到平面的距离相等,则;③在中,“”是“”的必要不充分条件;④若,则的最大值为2.A.1 B.2 C.3 D.04.若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是()A. B. C. D.5.将函数图象向右平移个单位长度后,得到函数的图象关于直线对称,则函数在上的值域是()A. B. C. D.6.已知函数,要得到函数的图象,只需将的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度7.已知变量的几组取值如下表:12347若与线性相关,且,则实数()A. B. C. D.8.在棱长为a的正方体中,E、F、M分别是AB、AD、的中点,又P、Q分别在线段、上,且,设平面平面,则下列结论中不成立的是()A.平面 B.C.当时,平面 D.当m变化时,直线l的位置不变9.已知函数,若,则等于()A.-3 B.-1 C.3 D.010.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A.12种 B.18种 C.24种 D.64种11.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为()A. B. C. D.12.某程序框图如图所示,若输出的,则判断框内为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.袋中装有两个红球、三个白球,四个黄球,从中任取四个球,则其中三种颜色的球均有的概率为________.14.已知,,则与的夹角为.15.已知函数的部分图象如图所示,则的值为____________.16.的展开式中含的系数为__________.(用数字填写答案)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角的对边分别为,已知.(1)求角的大小;(2)若,求的面积.18.(12分)已知函数.(1)讨论的单调性;(2)函数,若对于,使得成立,求的取值范围.19.(12分)已知.(1)若的解集为,求的值;(2)若对任意,不等式恒成立,求实数的取值范围.20.(12分)2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;(Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求的分布列和数学期望;(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出的最小值.(结论不要求证明)21.(12分)已知函数.(1)当时,求函数的图象在处的切线方程;(2)讨论函数的单调性;(3)当时,若方程有两个不相等的实数根,求证:.22.(10分)已知数列{an}的各项均为正,Sn为数列{an}的前n项和,an2+2an=4Sn+1.(1)求{an}的通项公式;(2)设bn,求数列{bn}的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由条件利用余弦函数的图象的对称性,得出结论.【详解】对于函数,令,解得,当时,函数的对称轴为,,.故选:D.【点睛】本题主要考查余弦函数的图象的对称性,属于基础题.2、A【解析】

由垂心的性质,得到,可转化,又即得解.【详解】因为为的垂心,所以,所以,而,所以,因为是的中点,所以.故选:A【点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.3、B【解析】

根据等差数列的定义,线面关系,余弦函数以及基本不等式一一判断即可;【详解】解:①已知函数是一次函数,若数列的通项公式为,可得为一次项系数),则该数列是等差数列,故①正确;②若直线上有两个不同的点到平面的距离相等,则与可以相交或平行,故②错误;③在中,,而余弦函数在区间上单调递减,故“”可得“”,由“”可得“”,故“”是“”的充要条件,故③错误;④若,则,所以,当且仅当时取等号,故④正确;综上可得正确的有①④共2个;故选:B【点睛】本题考查命题的真假判断,主要是正弦定理的运用和等比数列的求和公式、等差数列的定义和不等式的性质,考查运算能力和推理能力,属于中档题.4、B【解析】

求得的导函数,由此构造函数,根据题意可知在上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.【详解】,设,要使在区间上不是单调函数,即在上有变号零点,令,则,令,则问题即在上有零点,由于在上递增,所以的取值范围是.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.5、D【解析】

由题意利用函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,求得结果.【详解】解:把函数图象向右平移个单位长度后,可得的图象;再根据得到函数的图象关于直线对称,,,,函数.在上,,,故,即的值域是,故选:D.【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,余弦函数的值域,属于中档题.6、A【解析】

根据函数图像平移原则,即可容易求得结果.【详解】因为,故要得到,只需将向左平移个单位长度.故选:A.【点睛】本题考查函数图像平移前后解析式的变化,属基础题.7、B【解析】

求出,把坐标代入方程可求得.【详解】据题意,得,所以,所以.故选:B.【点睛】本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数值.8、C【解析】

根据线面平行与垂直的判定与性质逐个分析即可.【详解】因为,所以,因为E、F分别是AB、AD的中点,所以,所以,因为面面,所以.选项A、D显然成立;因为,平面,所以平面,因为平面,所以,所以B项成立;易知平面MEF,平面MPQ,而直线与不垂直,所以C项不成立.故选:C【点睛】本题考查直线与平面的位置关系.属于中档题.9、D【解析】分析:因为题设中给出了的值,要求的值,故应考虑两者之间满足的关系.详解:由题设有,故有,所以,从而,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间的关系去寻找函数的解析式要满足的关系.10、C【解析】

根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①,将4人分成3组,有种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C.【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.11、A【解析】

设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可.【详解】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,由题意,,,则所求的概率为.故选:A.【点睛】本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.12、C【解析】程序在运行过程中各变量值变化如下表:KS是否继续循环循环前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循环的条件应为k>5?本题选择C选项.点睛:使用循环结构寻数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数.尤其是统计数时,注意要统计的数的出现次数与循环次数的区别.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

基本事件总数n126,其中三种颜色的球都有包含的基本事件个数m72,由此能求出其中三种颜色的球都有的概率.【详解】解:袋中有2个红球,3个白球和4个黄球,从中任取4个球,基本事件总数n126,其中三种颜色的球都有,可能是2个红球,1个白球和1个黄球或1个红球,2个白球和1个黄球或1个红球,1个白球和2个黄球,所以包含的基本事件个数m72,∴其中三种颜色的球都有的概率是p.故答案为:.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.14、【解析】

根据已知条件,去括号得:,15、【解析】

由图可得的周期、振幅,即可得,再将代入可解得,进一步求得解析式及.【详解】由图可得,,所以,即,又,即,,又,故,所以,.故答案为:【点睛】本题考查由图象求解析式及函数值,考查学生识图、计算等能力,是一道中档题.16、【解析】由题意得,二项式展开式的通项为,令,则,所以得系数为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)利用正弦定理边化角,再利用二倍角的正弦公式与正弦的和角公式化简求解即可.(2)由(1)有,根据正弦定理可得,进而求得的值,再根据三角形的面积公式求解即可.【详解】(1)由,得,得,由正弦定理得,显然,同时除以,得.所以.所以.显然,所以,解得.又,所以.(2)若,由正弦定理得,得,解得.又,所以.【点睛】本题主要考查了正余弦定理与面积公式在解三角形中的运用,需要根据题意用正弦定理进行边角互化,再根据三角恒等变换进行化简求解等.属于中档题.18、(1)当时,在上增;当时,在上减,在上增(2)【解析】

(1)求出导函数,分类讨论确定的正负,确定单调区间;(2)题意说明,利用导数求出的最小值,由(1)可得的最小值,从而得出结论.【详解】解:(1)定义域为当时,即在上增;当时,即得得综上所述,当时,在上增;当时,在上减,在上增(2)由题在上增由(1)当时,在上增,所以此时无最小值;当时,在上减,在上增,即,解得综上【点睛】本题考查用导数求函数的单调区间,考查不等式恒成立问题,解题关键是掌握转化与化归思想,本题恒成立问题转化为,求出两函数的最小值后可得结论.19、(1);(2)【解析】

(1)利用两边平方法解含有绝对值的不等式,再根据根与系数的关系求出的值;(2)利用绝对值不等式求出的最小值,把不等式化为只含有的不等式,求出不等式解集即可.【详解】(1)不等式,即两边平方整理得由题意知和是方程的两个实数根即,解得(2)因为所以要使不等式恒成立,只需当时,,解得,即;当时,,解得,即;综上所述,的取值范围是【点睛】本题考查了含有绝对值的不等式解法与应用问题,也考查了分类讨论思想,是中档题.20、(Ⅰ)万;(Ⅱ)分布列见解析,;(Ⅲ)【解析】

(Ⅰ)根据比例关系直接计算得到答案.(Ⅱ)的可能取值为,计算概率得到分布列,再计算数学期望得到答案.(Ⅲ)英语测试成绩在70分以上的概率为,故,解得答案.【详解】(Ⅰ)样本中女生英语成绩在分以上的有人,故人数为:万人.(Ⅱ)8名男生中,测试成绩在70分以上的有人,的可能取值为:.,,.故分布列为:.(Ⅲ)英语测试成绩在70分以上的概率为,故,故.故的最小值为.【点睛】本题考查了样本估计总体,分布列,数学期望,意在考查学生的计算能力和综合应用能力.21、(1);(2)当时,在上是减函数;当时,在上是增函数;(3)证明见解析.【解析】

(1)当时,,求得其导函数,,可求得函数的图象在处的切线方程;(2)由已知得,得出导函数,并得出导函数取得正负的区间,可得出函数的单调性;(3)当时,,,由(2)得的单调区间,以当方程有两个不相等的实数根,不妨设,且有,,构造函数,分析其导函数的正负得出函数的单调性,得出其最值,所证的不等式可得证.【详解】(1)当时,,所以,,所以函数的图象在处的切线方程为,即;(2)由已知得,,令,得,所以当时,,当时,,所以在上是减函数,在上是增函数;(3)当时,,,由(2)得在上单调递减,在单调递增,所以,且时,,当时,,,所以当方程有两个不相等的实数根,不妨设,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论