河北省保定市唐县第一中学2025届高三第三次模拟考试数学试卷含解析_第1页
河北省保定市唐县第一中学2025届高三第三次模拟考试数学试卷含解析_第2页
河北省保定市唐县第一中学2025届高三第三次模拟考试数学试卷含解析_第3页
河北省保定市唐县第一中学2025届高三第三次模拟考试数学试卷含解析_第4页
河北省保定市唐县第一中学2025届高三第三次模拟考试数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定市唐县第一中学2025届高三第三次模拟考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的大致图像为()A. B.C. D.2.函数f(x)=lnA. B. C. D.3.若,则实数的大小关系为()A. B. C. D.4.已知纯虚数满足,其中为虚数单位,则实数等于()A. B.1 C. D.25.的展开式中的一次项系数为()A. B. C. D.6.已知数列为等差数列,为其前项和,,则()A.7 B.14 C.28 D.847.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为()A. B. C. D.8.函数(),当时,的值域为,则的范围为()A. B. C. D.9.已知函数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为A. B. C. D.10.已知偶函数在区间内单调递减,,,,则,,满足()A. B. C. D.11.已知x,,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件12.已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.14.已知抛物线,点为抛物线上一动点,过点作圆的切线,切点分别为,则线段长度的取值范围为__________.15.曲线在处的切线方程是_________.16.能说明“若对于任意的都成立,则在上是减函数”为假命题的一个函数是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)移动支付(支付宝及微信支付)已经渐渐成为人们购物消费的一种支付方式,为调查市民使用移动支付的年龄结构,随机对100位市民做问卷调查得到列联表如下:(1)将上列联表补充完整,并请说明在犯错误的概率不超过0.01的前提下,认为支付方式与年龄是否有关?(2)在使用移动支付的人群中采用分层抽样的方式抽取10人做进一步的问卷调查,从这10人随机中选出3人颁发参与奖励,设年龄都低于35岁(含35岁)的人数为,求的分布列及期望.(参考公式:(其中)18.(12分)如图,已知在三棱台中,,,.(1)求证:;(2)过的平面分别交,于点,,且分割三棱台所得两部分几何体的体积比为,几何体为棱柱,求的长.提示:台体的体积公式(,分别为棱台的上、下底面面积,为棱台的高).19.(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,.求证:(1)平面;(2)平面平面.20.(12分)已知函数存在一个极大值点和一个极小值点.(1)求实数a的取值范围;(2)若函数的极大值点和极小值点分别为和,且,求实数a的取值范围.(e是自然对数的底数)21.(12分)在四棱柱中,底面为正方形,,平面.(1)证明:平面;(2)若,求二面角的余弦值.22.(10分)已知函数,,.函数的导函数在上存在零点.求实数的取值范围;若存在实数,当时,函数在时取得最大值,求正实数的最大值;若直线与曲线和都相切,且在轴上的截距为,求实数的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

通过取特殊值逐项排除即可得到正确结果.【详解】函数的定义域为,当时,,排除B和C;当时,,排除A.故选:D.【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.2、C【解析】因为fx=lnx2-4x+4x-23=3、A【解析】

将化成以为底的对数,即可判断的大小关系;由对数函数、指数函数的性质,可判断出与1的大小关系,从而可判断三者的大小关系.【详解】依题意,由对数函数的性质可得.又因为,故.故选:A.【点睛】本题考查了指数函数的性质,考查了对数函数的性质,考查了对数的运算性质.两个对数型的数字比较大小时,底数相同,则构造对数函数,结合对数的单调性可判断大小;若真数相同,则结合对数函数的图像或者换底公式可判断大小;若真数和底数都不相同,则可与中间值如1,0比较大小.4、B【解析】

先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.【详解】因为,所以,又因为是纯虚数,所以,所以.故选:B.【点睛】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数为纯虚数,则有.5、B【解析】

根据多项式乘法法则得出的一次项系数,然后由等差数列的前项和公式和组合数公式得出结论.【详解】由题意展开式中的一次项系数为.故选:B.【点睛】本题考查二项式定理的应用,应用多项式乘法法则可得展开式中某项系数.同时本题考查了组合数公式.6、D【解析】

利用等差数列的通项公式,可求解得到,利用求和公式和等差中项的性质,即得解【详解】,解得..故选:D【点睛】本题考查了等差数列的通项公式、求和公式和等差中项,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.7、B【解析】

根据程序框图知当时,循环终止,此时,即可得答案.【详解】,.运行第一次,,不成立,运行第二次,,不成立,运行第三次,,不成立,运行第四次,,不成立,运行第五次,,成立,输出i的值为11,结束.故选:B.【点睛】本题考查补充程序框图判断框的条件,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意模拟程序一步一步执行的求解策略.8、B【解析】

首先由,可得的范围,结合函数的值域和正弦函数的图像,可求的关于实数的不等式,解不等式即可求得范围.【详解】因为,所以,若值域为,所以只需,∴.故选:B【点睛】本题主要考查三角函数的值域,熟悉正弦函数的单调性和特殊角的三角函数值是解题的关键,侧重考查数学抽象和数学运算的核心素养.9、C【解析】

将函数的图象向左平移个单位长度,得到函数的图象,因为函数的图象的一条对称轴是,所以,即,所以,又,所以的最小值为.故选C.10、D【解析】

首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【详解】因为偶函数在减,所以在上增,,,,∴.故选:D【点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.11、D【解析】

,不能得到,成立也不能推出,即可得到答案.【详解】因为x,,当时,不妨取,,故时,不成立,当时,不妨取,则不成立,综上可知,“”是“”的既不充分也不必要条件,故选:D【点睛】本题主要考查了充分条件,必要条件的判定,属于容易题.12、B【解析】

由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.【详解】抛物线的焦点为,则,即,设点的坐标为,点的坐标为,如图:∴,解得,或(舍去),∴∴直线的方程为,设直线与抛物线的另一个交点为,由,解得或,∴,∴,故直线被截得的弦长为.故选:B.【点睛】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1.【解析】

先求得高三学生占的比例,再利用分层抽样的定义和方法,即可求解.【详解】由题意,高三学生占的比例为,所以应从高三年级学生中抽取的人数为.【点睛】本题主要考查了分层抽样的定义和方法,其中解答中熟记分层抽样的定义和抽取的方法是解答的关键,着重考查了运算与求解能力,属于基础题.14、【解析】

连接,易得,可得四边形的面积为,从而可得,进而求出的取值范围,可求得的范围.【详解】如图,连接,易得,所以四边形的面积为,且四边形的面积为三角形面积的两倍,所以,所以,当最小时,最小,设点,则,所以当时,,则,当点的横坐标时,,此时,因为随着的增大而增大,所以的取值范围为.故答案为:.【点睛】本题考查直线与圆的位置关系的应用,考查抛物线上的动点到定点的距离的求法,考查学生的计算求解能力,属于中档题.15、【解析】

利用导数的运算法则求出导函数,再利用导数的几何意义即可求解.【详解】求导得,所以,所以切线方程为故答案为:【点睛】本题考查了基本初等函数的导数、导数的运算法则以及导数的几何意义,属于基础题.16、答案不唯一,如【解析】

根据对基本函数的理解可得到满足条件的函数.【详解】由题意,不妨设,则在都成立,但是在是单调递增的,在是单调递减的,说明原命题是假命题.所以本题答案为,答案不唯一,符合条件即可.【点睛】本题考查对基本初等函数的图像和性质的理解,关键是假设出一个在上不是单调递减的函数,再检验是否满足命题中的条件,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)列联表见解析,在犯错误的概率不超过0.01的前提下,认为支付方式与年龄有关;(2)分布列见解析,期望为.【解析】

(1)根据题中所给的条件补全列联表,根据列联表求出观测值,把观测值同临界值进行比较,得到能在犯错误的概率不超过0.01的前提下,认为支付方式与年龄有关.(2)首先确定的取值,求出相应的概率,可得分布列和数学期望.【详解】(1)根据题意及列联表可得完整的列联表如下:35岁以下(含35岁)35岁以上合计使用移动支付401050不使用移动支付104050合计5050100根据公式可得,所以在犯错误的概率不超过0.01的前提下,认为支付方式与年龄有关.(2)根据分层抽样,可知35岁以下(含35岁)的人数为8人,35岁以上的有2人,所以获得奖励的35岁以下(含35岁)的人数为,则的可能为1,2,3,且,,,其分布列为123.【点睛】独立性检验依据的值结合附表数据进行判断,另外,离散型随机变量的分布列,在求解的过程中,注意变量的取值以及对应的概率要计算正确,注意离散型随机变量的期望公式的使用,属于中档题目.18、(1)证明见解析;(2)2【解析】

(1)在中,利用勾股定理,证得,又由题设条件,得到,利用线面垂直的判定定理,证得平面,进而得到;(2)设三棱台和三棱柱的高都为上、下底面之间的距离为,根据棱台的体积公式,列出方程求得,得到,即可求解.【详解】(1)由题意,在中,,,所以,可得,因为,可得.又由,,平面,所以平面,因为平面,所以.(2)因为,可得,令,,设三棱台和三棱柱的高都为上、下底面之间的距离为,则,整理得,即,解得,即,又由,所以.【点睛】本题主要考查了直线与平面垂直的判定与应用,以及几何体的体积公式的应用,其中解答中熟记线面位置关系的判定定理与性质定理,以及熟练应用几何体的体积公式进行求解是解答的关键,着重考查了推理与计算能力,属于基础题.19、(1)详见解析;(2)详见解析.【解析】

(1)连结根据中位线的性质证明即可.(2)证明,再证明平面即可.【详解】解:证明:连结是菱形对角线的交点,为的中点,是棱的中点,平面平面平面解:在菱形中,且为的中点,,,平面平面,平面平面.【点睛】本题主要考查了线面平行与垂直的判定,属于基础题.20、(1);(2).【解析】

(1)首先对函数求导,根据函数存在一个极大值点和一个极小值点求出a的取值范围;(2)首先求出的值,再根据求出实数a的取值范围.【详解】(1)函数的定义域为是,,若有两个极值点,则方程一定有两个不等的正根,设为和,且,所以解得,此时,当时,,当时,,当时,,故是极大值点,是极小值点,故实数a的取值范围是;(2)由(1)知,,,则,,,由,得,即,令,考虑到,所以可化为,而,所以在上为增函数,由,得,故实数a的取值范围是.【点睛】本题主要考查了利用导数研究函数的极值点和单调性,利用函数单调性证明不等式,属于难题.21、(1)详见解析;(2).【解析】

(1)连接,设,可证得四边形为平行四边形,由此得到,根据线面平行判定定理可证得结论;(2)以为原点建立空间直角坐标系,利用二面角的空间向量求法可求得结果.【详解】(1)连接,设,连接,在四棱柱中,分别为的中点,,四边形为平行四边形,,平面,平面,平面.(2)以为原点,所在直线分别为轴建立空间直角坐标系.设,四边形为正方形,,,则,,,,,,,设为平面的法向量,为平面的法向量,由得:,令,则,,由得:,令,则,,,,,二面角为锐二面角,二面角的余弦值为.【点睛】本题考查立体几何中线面平行关系的证明、空间向量法求解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论