版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学年池州市高三数学上学期期末考试卷2024.1满分:150分考试时间:120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A. B. C. D.2.已知,则()A. B. C. D.23.已知向量,若,则下列关系一定成立的是()A. B. C. D.4.已知函数在区间上单调递增,则实数a的取值范围是()A. B. C. D.5.某种化学物质的衰变满足指数函数模型,每周该化学物质衰减,则经过周后,该化学物质的存量低于该化学物质的,则的最小值为()(参考数据:)A. B. C. D.6.的展开式中的系数为()A.10 B. C.20 D.7.已知过点与圆:相切的两条直线分别是,若的夹角为,则()A. B. C. D.8.下列不等关系中错误的是()A B. C. D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列判断中正确的是()A.一组从小到大排列的数据,1,3,5,6,7,9,x,10,10,去掉x与不去掉x,它们的80%分位数都不变,则B.两组数据与,设它们的平均值分别为与,将它们合并在一起,则总体的平均值为C.已知离散型随机变量,则D.线性回归模型中,相关系数r的值越大,则这两个变量线性相关性越强10.下列函数中均满足下面三个条件的是()①为偶函数;②;③有最大值A. B.C D.11.如图,棱长为1的正方体中,E为棱的中点,点F在该正方体的侧面上运动,且满足平面.下列说法正确的是()A.点F轨迹是长度为的线段B.三棱锥的体积为定值C.存在一点F,使得D.直线与直线所成角的正弦值的取值范围为12.已知数列满足,则下列说法正确的是()A. B.递增数列C. D.三、填空题:本题共4小题,每小题5分,共20分.13.某校思想品德课教师一天有3个不同班的课,每班一节,如果该校一天共7节课,上午4节,下午3节,该教师的3节课任意两节都不能连着上(第四节和第五节不算连着上),则该教师一天的课所有不同的排法有___________种.14.已知函数的图象如图所示,则___________.15.已知双曲线的左、右焦点分别为,点A在双曲线C上,点B在y轴上,,则双曲线C的离心率为___________.16.现有一个底面边长为,高为4的正三棱柱形密闭容器,在容器中有一个半径为1的小球,小球可以在正三棱柱形容器中任意运动,则小球未能达到的空间体积为___________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知在中,角的对边分别是,且.(1)求角C的大小;(2)若的面积,求的值.18.已知正项数列的前n项和为.(1)求数列前n项和;(2)令,求的前9项之和.19.如图,在五面体中,四边形是矩形,平面平面.(1)求该五面体的体积;(2)请判断在棱上是否存在一点G,使得与平面所成角的正弦值为?若存在,求的长;若不存在,请说明理由.20.编号为1,2,3,4的四名同学一周内课外阅读的时间(单位:h)用表示,,将四名同学的课外阅读时间看成总体,则总体的均值为.先后随机抽取两个值,用这两个值的均值来估计总体均值.(1)若采用有放回的方式抽样(两个值可以相同),则样本均值的可能取值有多少个?写出样本均值的分布列并求其数学期望;(2)若采用无放回的方式抽样,则样本均值超过总体均值的概率会不会大于0.5?(3)若考虑样本均值与总体均值的差的绝对值不超过0.5的概率,那么采用哪种抽样方法概率更大?21.已知椭圆具有如下光学性质:从椭圆一个焦点发出的光线射向椭圆上任一点,经椭圆反射后必经过另一个焦点.若从椭圆的左焦点发出的光线,经过两次反射之后回到点,光线经过的路程为8,椭圆C的离心率为.(1)求椭圆C的标准方程;(2)如图,若椭圆C的右顶点为A,上顶点为B,动直线l交椭圆C于P、Q两点,且始终满足,作交于点M,求的最大值.22.已知函数与的图象关于直线对称,若,构造函数.(1)当时,求函数在点处的切线与坐标轴围成三角形的面积;(2)若(其中为的导函数),当时,,证明:.(参考数据:)2023学年池州市高三数学上学期期末考试卷满分:150分考试时间:120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则()A. B. C. D.【答案】C【解析】【分析】依题求得的定义域,得集合,再利用交集定义即得.【详解】因,而,.故选:C.2.已知,则()A. B. C. D.2【答案】B【解析】【分析】根据题意,利用复数的运算法则,求得,得到,即可求解.【详解】由复数,可得,所以,则.故选:B.3.已知向量,若,则下列关系一定成立的是()A. B. C. D.【答案】D【解析】【分析】利用向量线性运算坐标表示以及向量平行的坐标关系可直接求得答案.【详解】,由可得,,整理得.故选:D.4.已知函数在区间上单调递增,则实数a的取值范围是()A. B. C. D.【答案】A【解析】【分析】根据题意,结合对数型复合函数的单调性的判定方法,列出不等式,即可求解.【详解】由函数在上单调递增,因为函数在区间上单调递增,则有函数在区间上恒正且单调递增,则满足且,解得,所以实数的取值范围是.故选:A.5.某种化学物质的衰变满足指数函数模型,每周该化学物质衰减,则经过周后,该化学物质的存量低于该化学物质的,则的最小值为()(参考数据:)A. B. C. D.【答案】C【解析】【分析】设该化学物质最初的质量为,经过周后,该化学物质的存量为,根据题意可得出,结合指数函数的单调性、换底公式可求得的最小值.【详解】设该化学物质最初的质量为,经过周后,该化学物质的存量为,由题意可得,即,可得,所以,,故正整数的最小值为.故选:C.6.的展开式中的系数为()A.10 B. C.20 D.【答案】A【解析】【分析】将原式化为的形式,再利用二项展开式的通项公式求解可得答案.【详解】,展开式的通项公式为,时,,所以的系数为.故选:A.7.已知过点与圆:相切的两条直线分别是,若的夹角为,则()A. B. C. D.【答案】D【解析】【分析】由题意可得该圆圆心,半径,借助切线定义可得【详解】,即,可得圆心,半径,过点作圆C的切线,切点为M,N,,则,则,故,故为钝角,则.故选:D.8.下列不等关系中错误的是()A. B. C. D.【答案】C【解析】【分析】对于A项,利用等价转化即得;对于B,C,D项都要结合式子特征,通过观察、拼凑构造函数,利用函数的单调性进行判断.【详解】对于A项,因,故A项正确;对于B项,设,则在上恒成立,故函数在上单调递增,因,故,即,故,故B项正确;对于C项,因,故构造,则则在上单调递增,,故C项错误;对于D项,,,构造函数则单调递增,,故D项正确.故选:C.【点睛】关键点法点睛:本题主要考查构造函数比较大小问题,属于难题.解决比较大小问题的关键在于将不等式进行等价转化,通过观察特点,拼凑,使其具有相同的结构,构造函数,通过求导得到函数的单调性,利用单调性比较式的大小.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列判断中正确的是()A.一组从小到大排列的数据,1,3,5,6,7,9,x,10,10,去掉x与不去掉x,它们的80%分位数都不变,则B.两组数据与,设它们的平均值分别为与,将它们合并在一起,则总体的平均值为C.已知离散型随机变量,则D.线性回归模型中,相关系数r的值越大,则这两个变量线性相关性越强【答案】AB【解析】【分析】根据题意,结合百分位数,期望与方程的计算与性质,以及相关系数的意义,逐项判定,即可求解.【详解】对于A中,数据,1,3,5,6,7,9,x,10,10的80%分位数为,数据,1,3,5,6,7,9,10,10的80%分位数为10,所以,选项A正确;对于B中,由平均数的公式,可得,,则将它们合并在一起,可得,所以B正确;对于C中,离散型随机变量,可得,根据方差的性质,可得,所以C错误;对于D中,相关系数越大,两个变量线性相关性越强,所以D错误.故选:AB.10.下列函数中均满足下面三个条件的是()①为偶函数;②;③有最大值A. B.C. D.【答案】BC【解析】【分析】根据题意,结合初等函数的性质,逐项判定,即可求解.【详解】由题意,函数满足:①为偶函数;②;③有最大值,对于A中,函数,由余弦函数的性质,可得,不满足②,所以A不符合题意;对于B中,函数,由,满足①;又由,满足②;由函数,满足③,所以B符合题意;对于C中,函数,由,满足①;又由,可得,满足②;当时,可得,满足③,所以C符合题意;对于D中,函数,由,可得,无最大值,不满足③,所以D不符合题意.故选:BC.11.如图,棱长为1的正方体中,E为棱的中点,点F在该正方体的侧面上运动,且满足平面.下列说法正确的是()A.点F轨迹是长度为的线段B.三棱锥的体积为定值C.存在一点F,使得D.直线与直线所成角的正弦值的取值范围为【答案】ACD【解析】【分析】设G为中点,证得平面,平面,得到平面平面,得出点的轨迹为线段,可判定A正确;由,可判定B错误;当点为中点时,证得,可判定C正确;当点为中点和点与或重合时,分别求得直线与直线所成角的正弦值可判定D正确.【详解】设G为中点,则截面图形是为等腰梯形,分别为中点,可得且,因为平面,平面,且平面,平面,所以平面,平面,又因为,且平面,所以平面平面,因为平面,且点在该正方体的侧面上运动,所以点的轨迹为线段,且,所以A正确;由,所以B错误;当点为中点时,因为,可得,因为,所以,所以C正确;当点为中点时,在正方体,可得,则直线与直线所成的角,即为直线与直线所成的角,设,在等腰中,,可得,在中,可得,所以;当点与或重合时,此时直线与直线所成角的正弦值为,所以直线与直线所成角的正弦值的取值范围为,所以D正确.故选:ACD.12.已知数列满足,则下列说法正确的是()A. B.为递增数列C. D.【答案】ACD【解析】【分析】利用作差法由数列单调性可求得数列为递增数列,可得A正确;再根据以及复合函数单调性可判断B,化简整理可判断C正确,由关系式可得,再利用累加法可判断D正确.【详解】因为,即,所以数列为递增数列,可得,选项A正确;因为数列为递增数列且,则为递减数列,选项B错误;因为,可得,两边平方整理得,选项C正确.因为,整理得,两边平方得,即,可得,累加可得,即,所以,故D正确.故选:ACD【点睛】关键点点睛:再判断D选项时,关键要对表达式整理变形后进行合理放缩可得,即,再利用累加法即可作出判断.三、填空题:本题共4小题,每小题5分,共20分.13.某校思想品德课教师一天有3个不同班的课,每班一节,如果该校一天共7节课,上午4节,下午3节,该教师的3节课任意两节都不能连着上(第四节和第五节不算连着上),则该教师一天的课所有不同的排法有___________种.【答案】78【解析】【分析】利用分类加法计数原理结合排列知识可直接求得答案.【详解】上午2节不连堂,下午一节,共有种;上午1节,下午2节不连堂,共有,故不同的排课方案共有种.故答案为:78.14.已知函数的图象如图所示,则___________.【答案】【解析】【分析】由图象可得A,及函数周期,后由图可得,可得,即可得答案.【详解】由图象可得,函数的最小正周期为,,则,,,即,由于,,故故答案为:15.已知双曲线的左、右焦点分别为,点A在双曲线C上,点B在y轴上,,则双曲线C的离心率为___________.【答案】【解析】【分析】由题,结合图形可得,又由,结合双曲线定义及勾股定理可得答案.【详解】因,,点B在y轴上,则.又,则,,由勾股定理,,由双曲线定义,则.故答案为:.16.现有一个底面边长为,高为4的正三棱柱形密闭容器,在容器中有一个半径为1的小球,小球可以在正三棱柱形容器中任意运动,则小球未能达到的空间体积为___________.【答案】【解析】【分析】计算边长为的正三角形的内切圆半径可得该小球恰好与该正三棱柱从侧面相切,则可计算出移动中所形成的空间几何体的体积,再用正三棱柱体积减去总体积即可得小球未能达到的空间体积.【详解】边长为正三角形的内切圆半径为:,故该小球恰好与该正三棱柱从侧面相切,球在上下移动中所形成的空间几何体为两个半球圆柱,其体积为:,所以剩下体积:.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知在中,角的对边分别是,且.(1)求角C的大小;(2)若的面积,求的值.【答案】(1)(2)或【解析】【分析】(1)由,化简得到,求得,即可求解;(2)由的面积,求得,再由余弦定理列出方程,求得或,进而求得的值.【小问1详解】解:由题意知因为,可得,所以,即,可得,又因为,可得,所以,因为,所以.【小问2详解】解:因为的面积,可得,解得,由余弦定理得,即,解得或,当时,可得,所以;当时,可得,所以.18.已知正项数列的前n项和为.(1)求数列的前n项和;(2)令,求的前9项之和.【答案】(1)(2)【解析】【分析】(1)由,得到,两式相减,整理得到,得到数列是等差数列,结合等差数列的通项公式和求和公式,即可求解;(2)由(1)得到,结合裂项法去和,即可求解.【小问1详解】解:正项数列的前n项和为,满足,可得,两式相减可得,所以,因为,所以,又因为,解得,所以数列是以首项为1,公差为2的等差数列,则数列的通项公式为,可得.【小问2详解】解:由(1)知,可得,所以.19.如图,在五面体中,四边形是矩形,平面平面.(1)求该五面体的体积;(2)请判断在棱上是否存在一点G,使得与平面所成角的正弦值为?若存在,求的长;若不存在,请说明理由.【答案】(1)(2)存在,【解析】【分析】(1)易证,分别取与的中点M,N,连接,则五面体面积分割成棱柱和棱锥,结合柱体体积公式进而得解;(2)取中点为O,中点Q,连接,以O为坐标原点,为x轴,为y轴,为z轴建立空间直角坐标系,求出平面的法向量,设,求出点,得到,结合向量夹角公式求出,进而求出的长.【小问1详解】因为底面是矩形,所以,又因为平面,平面,所以平面,又因过的平面平面,所以,分别取与的中点M,N,连接,则平面将五面体分割成两部分,几何体和棱锥,故,取中点为O,,,为中点,,平面平面,平面平面,平面,平面,又因为,所以,则几何体为棱柱,取的中点,连接,可得,则四边形为平行四边形,则,由平面,可得平面,则为棱锥的高,由可得,则,又,平面,平面平面,平面平面,所以平面,所以为棱柱的高,,;【小问2详解】取中点Q,连接,易得,结合(1)可知两两垂直,以O为坐标原点,为x轴,为y轴,为z轴建立如图所示的空间直角坐标系;则,,,设平面的法向量,可得则,得,令得,解得平面的一个法向量,上,设,,,则,设直线与平面所成角,,或(舍去),,故存在G点,当,即G与F重合时,与平面所成角的正弦值为.20.编号为1,2,3,4的四名同学一周内课外阅读的时间(单位:h)用表示,,将四名同学的课外阅读时间看成总体,则总体的均值为.先后随机抽取两个值,用这两个值的均值来估计总体均值.(1)若采用有放回的方式抽样(两个值可以相同),则样本均值的可能取值有多少个?写出样本均值的分布列并求其数学期望;(2)若采用无放回的方式抽样,则样本均值超过总体均值的概率会不会大于0.5?(3)若考虑样本均值与总体均值的差的绝对值不超过0.5的概率,那么采用哪种抽样方法概率更大?【答案】(1)16个,分布列见解析,(2)不会(3)采用无放回的抽样方法概率更大【解析】【分析】(1)根据题意,列出基本事件空间,求得相应的概率,得出分布列,利用公式求得数学期望;(2)根据题意,列出基本事件空间,求得相应的概率,得出分布列,利用公式求得数学期望;(3)分别求得有放回的抽样时,,无放回的抽样时,,结合,即可求解.【小问1详解】解:有放回抽样会有16个等可能的样本55.566.55.566.5766.577.56.577.58可得,,所以样本均值的分布列为:55.566.577.58P则均值.【小问2详解】解:无放回抽样会有12个等可能的样本,5.566.55.56.5766.57.56.577.5可得所以样本均值的分布列为:5.566.577.5P所以样本均值超过总体均值的概率为,所以样本均值超过总体均值的概率不会大于0.5.【小问3详解】解:样本均值与总体均值的误差不超过0.5的概率,有放回的抽样,;无放回的抽样,,因为,故采用无放回的抽样方法概率更大.21.已知椭圆具有如下光学性质:从椭圆的一个焦点发出的光线射向椭圆上任一点,经椭圆反射后必经过另一个焦点.若从椭圆的左焦点发出的光线,经过两次反射之后回到点,光线经过的路程为8,椭圆C的离心率为.(1)求椭圆C的标准方程;(2)如图,若椭圆C的右顶点为A,上顶点为B,动直线l交椭圆C于P、Q两点,且始终满足,作交于点M,求的最大值.【答案】(1)(2)【解析】【分析】(1)根据题意,得到,再由离心率为,求得,进而求得椭圆的标准方程;(2)设,直线的方程为,联立方程组得到,结合,求得点M的轨迹方程为,法1、设,得到,结合圆的性质,即可求解;法2、设,得到,结合三角函数的性质,即可求解.【小问1详解】解:由椭圆的性质可知,左焦点发出的光线,经过两次反射之后回到点,可得光
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋买卖合同的二手房买卖合同
- 购销学校帐篷合同书
- 行车安全保障函
- 网络电商合作合同样本
- 临时工合同书
- 电力使用安全责任
- 家用中央空调采购合同
- 软装材料选购协议
- 忠诚守护男友的誓言
- 工程分包合同分项工程
- 语 文病句专题讲练-2024-2025学年统编版语文七年级上册
- 第三单元(复习课件)一年级语文上册(统编版2024秋)
- 2024年大学试题(计算机科学)-数字图像处理考试近5年真题集锦(频考类试题)带答案
- 文旅深度融合长期发展规划
- ASTM-D3359-(附著力测试标准)-中文版
- 5 协商决定班级事务 (教学设计)-2024-2025学年道德与法治五年级上册统编版
- 2024年清洁机器人项目合作计划书
- 高校实验室安全通识课学习通超星期末考试答案章节答案2024年
- 银行客户经理招聘面试题与参考回答(某大型集团公司)
- 残疾人体育活动推广与普及考核试卷
- 《安全系统工程》期末考试卷及答案
评论
0/150
提交评论