云南省文山马关实验高级中学2025届高考仿真模拟数学试卷含解析_第1页
云南省文山马关实验高级中学2025届高考仿真模拟数学试卷含解析_第2页
云南省文山马关实验高级中学2025届高考仿真模拟数学试卷含解析_第3页
云南省文山马关实验高级中学2025届高考仿真模拟数学试卷含解析_第4页
云南省文山马关实验高级中学2025届高考仿真模拟数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省文山马关实验高级中学2025届高考仿真模拟数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为()A. B. C. D.2.已知集合,则的值域为()A. B. C. D.3.港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为()A.300, B.300, C.60, D.60,4.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A. B. C. D.5.已知集合,,则等于()A. B. C. D.6.已知的垂心为,且是的中点,则()A.14 B.12 C.10 D.87.的二项展开式中,的系数是()A.70 B.-70 C.28 D.-288.已知平面向量满足,且,则所夹的锐角为()A. B. C. D.09.已知满足,则()A. B. C. D.10.设为非零向量,则“”是“与共线”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件11.中心在原点,对称轴为坐标轴的双曲线的两条渐近线与圆都相切,则双曲线的离心率是()A.2或 B.2或 C.或 D.或12.已知双曲线的左、右焦点分别为,,P是双曲线E上的一点,且.若直线与双曲线E的渐近线交于点M,且M为的中点,则双曲线E的渐近线方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.用数字、、、、、组成无重复数字的位自然数,其中相邻两个数字奇偶性不同的有_____个.14.在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.15.在中,角、、所对的边分别为、、,若,,则的取值范围是_____.16.二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论函数单调性;(2)当时,求证:.18.(12分)已知数列满足:对一切成立.(1)求数列的通项公式;(2)求数列的前项和.19.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线极坐标方程为.若直线交曲线于,两点,求线段的长.20.(12分)如图,三棱柱中,平面,,,分别为,的中点.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.21.(12分)近年来,随着“雾霾”天出现的越来越频繁,很多人为了自己的健康,外出时选择戴口罩,在一项对人们雾霾天外出时是否戴口罩的调查中,共调查了人,其中女性人,男性人,并根据统计数据画出等高条形图如图所示:(1)利用图形判断性别与雾霾天外出戴口罩是否有关系并说明理由;(2)根据统计数据建立一个列联表;(3)能否在犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩的关系.附:22.(10分)已知正项数列的前项和.(1)若数列为等比数列,求数列的公比的值;(2)设正项数列的前项和为,若,且.①求数列的通项公式;②求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.2、A【解析】

先求出集合,化简=,令,得由二次函数的性质即可得值域.【详解】由,得,,令,,,所以得,在上递增,在上递减,,所以,即的值域为故选A【点睛】本题考查了二次不等式的解法、二次函数最值的求法,换元法要注意新变量的范围,属于中档题3、B【解析】

由频率分布直方图求出在此路段上汽车行驶速度在区间的频率即可得到车辆数,同时利用频率分布直方图能求行驶速度超过的频率.【详解】由频率分布直方图得:在此路段上汽车行驶速度在区间的频率为,∴在此路段上汽车行驶速度在区间的车辆数为:,行驶速度超过的频率为:.故选:B.【点睛】本题考查频数、频率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.4、C【解析】令圆的半径为1,则,故选C.5、A【解析】

进行交集的运算即可.【详解】,1,2,,,,1,.故选:.【点睛】本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题.6、A【解析】

由垂心的性质,得到,可转化,又即得解.【详解】因为为的垂心,所以,所以,而,所以,因为是的中点,所以.故选:A【点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.7、A【解析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A.考点:二项式定理的应用.8、B【解析】

根据题意可得,利用向量的数量积即可求解夹角.【详解】因为即而所以夹角为故选:B【点睛】本题考查了向量数量积求夹角,需掌握向量数量积的定义求法,属于基础题.9、A【解析】

利用两角和与差的余弦公式展开计算可得结果.【详解】,.故选:A.【点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.10、A【解析】

根据向量共线的性质依次判断充分性和必要性得到答案.【详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,,故不必要.故选:.【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.11、A【解析】

根据题意,由圆的切线求得双曲线的渐近线的方程,再分焦点在x、y轴上两种情况讨论,进而求得双曲线的离心率.【详解】设双曲线C的渐近线方程为y=kx,是圆的切线得:,得双曲线的一条渐近线的方程为∴焦点在x、y轴上两种情况讨论:

①当焦点在x轴上时有:②当焦点在y轴上时有:∴求得双曲线的离心率2或.

故选:A.【点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想.解题的关键是:由圆的切线求得直线的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值.此题易忽视两解得出错误答案.12、C【解析】

由双曲线定义得,,OM是的中位线,可得,在中,利用余弦定理即可建立关系,从而得到渐近线的斜率.【详解】根据题意,点P一定在左支上.由及,得,,再结合M为的中点,得,又因为OM是的中位线,又,且,从而直线与双曲线的左支只有一个交点.在中.——①由,得.——②由①②,解得,即,则渐近线方程为.故选:C.【点睛】本题考查求双曲线渐近线方程,涉及到双曲线的定义、焦点三角形等知识,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

对首位数的奇偶进行分类讨论,利用分步乘法计数原理和分类加法计数原理可得出结果.【详解】①若首位为奇数,则第一、三、五个数位上的数都是奇数,其余三个数位上的数为偶数,此时,符号条件的位自然数个数为个;②若首位数为偶数,则首位数不能为,可排在第三或第五个数位上,第二、四、六个数位上的数为奇数,此时,符合条件的位自然数个数为个.综上所述,符合条件的位自然数个数为个.故答案为:.【点睛】本题考查数的排列问题,要注意首位数字的分类讨论,考查分步乘法计数和分类加法计数原理的应用,考查计算能力,属于中等题.14、9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.15、【解析】

计算出角的取值范围,结合正弦定理可求得的取值范围.【详解】,则,所以,,由正弦定理,.因此,的取值范围是.故答案为:.【点睛】本题主要考查了正弦定理,正弦函数图象和性质,考查了转化思想,属于基础题.16、【解析】

由二项式系数性质求出,由二项展开式通项公式得出常数项的项数,从而得常数项.【详解】由题意,.展开式通项为,由得,∴常数项为.故答案为:.【点睛】本题考查二项式定理,考查二项式系数的性质,掌握二项展开式通项公式是解题关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析【解析】

(1)根据的导函数进行分类讨论单调性(2)欲证,只需证,构造函数,证明,这时需研究的单调性,求其最大值即可【详解】解:(1)的定义域为,,①当时,由得,由,得,所以在上单调递增,在单调递减;②当时,由得,由,得,或,所以在上单调递增,在单调递减,在单调递增;③当时,,所以在上单调递增;④当时,由,得,由,得,或,所以在上单调递增,在单调递减,在单调递增.(2)当时,欲证,只需证,令,,则,因存在,使得成立,即有,使得成立.当变化时,,的变化如下:0单调递增单调递减所以.因为,所以,所以.即,所以当时,成立.【点睛】考查求函数单调性的方法和用函数的最值证明不等式的方法,难题.18、(1);(2)【解析】

(1)先通过求得,再由得,和条件中的式子作差可得答案;(2)变形可得,通过裂项求和法可得答案.【详解】(1)①,当时,,,当时,②,①②得:,,适合,故;(2),.【点睛】本题考查法求数列的通项公式,考查裂项求和,是基础题.19、【解析】

由,化简得,由,所以直线的直角坐标方程为,因为曲线的参数方程为,整理得,直线的方程与曲线的方程联立,,整理得,设,则,根据弦长公式求解即可.【详解】由,化简得,又因为,所以直线的直角坐标方程为,因为曲线的参数方程为,消去,整理得,将直线的方程与曲线的方程联立,,消去,整理得,设,则,所以,将,代入上式,整理得.【点睛】本题考查参数方程,极坐标方程的应用,结合弦长公式的运用,属于中档题.20、(1)详见解析;(2).【解析】

(1)连接,,则且为的中点,又∵为的中点,∴,又平面,平面,故平面.(2)由平面,得,.以为原点,分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,设,则,,,,,.取平面的一个法向量为,由,得:,令,得同理可得平面的一个法向量为∵平面平面,∴解得,得,又,设直线与平面所成角为,则.所以,直线与平面所成角的正弦值是.21、(1)图形见解析,理由见解析;(2)见解析;(3)犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩有关系【解析】

(1)利用等高条形图中两个深颜色条的高比较得出性别与雾霾天外出戴口罩有关系;(2)填写列联表即可;(3)由表中数据,计算观测值,对照临界值得出结论.【详解】解:(1)在等高条形图中,两个深色条的高分别表示女性和男性中雾霾天外出戴口罩的频率,比较图中两个深色条的高可以发现,女性中雾霾天外出带口罩的频率明显高于男性中雾霾天外出带口罩的频率,因此可以认为性别与雾霾天外出带口罩有关系.(2)列联表如下:戴口罩不戴口罩合计女性男性合计(3)由(2)中数据可得:.所以,在犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩有关系.【点睛】本题考查了列联表与独立性检验的应用问题,也考查了登高条形图的应用问题,属于基础题.22、(1);(2)①;②详见解析.【解析】

(1)依题意可表示,,相减得,由等比数列通项公式转化为首项与公比,解得答案,并由其都是正项数列舍根;(2)①由题意可表示,,两式相减得,由其都是正项并整理可得递推关系,由等差数列的通项公式即可得答案;②由已知关系,表示并相减即可表示递

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论