2025届湖南省衡阳市雁峰区第八中学高考仿真卷数学试卷含解析_第1页
2025届湖南省衡阳市雁峰区第八中学高考仿真卷数学试卷含解析_第2页
2025届湖南省衡阳市雁峰区第八中学高考仿真卷数学试卷含解析_第3页
2025届湖南省衡阳市雁峰区第八中学高考仿真卷数学试卷含解析_第4页
2025届湖南省衡阳市雁峰区第八中学高考仿真卷数学试卷含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省衡阳市雁峰区第八中学高考仿真卷数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为定义在上的奇函数,且满足当时,,则()A. B. C. D.2.年初,湖北出现由新型冠状病毒引发的肺炎.为防止病毒蔓延,各级政府相继启动重大突发公共卫生事件一级响应,全国人心抗击疫情.下图表示月日至月日我国新型冠状病毒肺炎单日新增治愈和新增确诊病例数,则下列中表述错误的是()A.月下旬新增确诊人数呈波动下降趋势B.随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数C.月日至月日新增确诊人数波动最大D.我国新型冠状病毒肺炎累计确诊人数在月日左右达到峰值3.设函数,当时,,则()A. B. C.1 D.4.元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,,则输出的()A.3 B.4 C.5 D.65.已知(为虚数单位,为的共轭复数),则复数在复平面内对应的点在().A.第一象限 B.第二象限 C.第三象限 D.第四象限6.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A. B.6 C. D.7.如图,矩形ABCD中,,,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:①对满足题意的任意的的位置,;②对满足题意的任意的的位置,,则()A.命题①和命题②都成立 B.命题①和命题②都不成立C.命题①成立,命题②不成立 D.命题①不成立,命题②成立8.函数的定义域为()A. B. C. D.9.双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为()A. B. C. D.10.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、、元).甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为()A. B. C. D.11.已知双曲线的左、右焦点分别为,,点P是C的右支上一点,连接与y轴交于点M,若(O为坐标原点),,则双曲线C的渐近线方程为()A. B. C. D.12.已知的内角、、的对边分别为、、,且,,为边上的中线,若,则的面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到点、距离之和的最小值为______________百米.14.已知实数,满足,则的最大值为______.15.设满足约束条件,则的取值范围是______.16.已知向量,,若,则实数______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于两点,过点作直线交椭圆于点,且,直线交轴于点.(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.18.(12分)如图,三棱柱中,平面,,,分别为,的中点.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.19.(12分)有最大值,且最大值大于.(1)求的取值范围;(2)当时,有两个零点,证明:.(参考数据:)20.(12分)如图,三棱柱的侧棱垂直于底面,且,,,,是棱的中点.(1)证明:;(2)求二面角的余弦值.21.(12分)如图,已知四棱锥,平面,底面为矩形,,为的中点,.(1)求线段的长.(2)若为线段上一点,且,求二面角的余弦值.22.(10分)已知函数(是自然对数的底数,).(1)求函数的图象在处的切线方程;(2)若函数在区间上单调递增,求实数的取值范围;(3)若函数在区间上有两个极值点,且恒成立,求满足条件的的最小值(极值点是指函数取极值时对应的自变量的值).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

由题设条件,可得函数的周期是,再结合函数是奇函数的性质将转化为函数值,即可得到结论.【详解】由题意,,则函数的周期是,所以,,又函数为上的奇函数,且当时,,所以,.故选:C.【点睛】本题考查函数的周期性,由题设得函数的周期是解答本题的关键,属于基础题.2、D【解析】

根据新增确诊曲线的走势可判断A选项的正误;根据新增确诊曲线与新增治愈曲线的位置关系可判断B选项的正误;根据月日至月日新增确诊曲线的走势可判断C选项的正误;根据新增确诊人数的变化可判断D选项的正误.综合可得出结论.【详解】对于A选项,由图象可知,月下旬新增确诊人数呈波动下降趋势,A选项正确;对于B选项,由图象可知,随着全国医疗救治力度逐渐加大,月下旬单日治愈人数超过确诊人数,B选项正确;对于C选项,由图象可知,月日至月日新增确诊人数波动最大,C选项正确;对于D选项,在月日及以前,我国新型冠状病毒肺炎新增确诊人数大于新增治愈人数,我国新型冠状病毒肺炎累计确诊人数不在月日左右达到峰值,D选项错误.故选:D.【点睛】本题考查统计图表的应用,考查数据处理能力,属于基础题.3、A【解析】

由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值.【详解】,时,,,∴,由题意,∴.故选:A.【点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键.4、B【解析】分析:根据流程图中的可知,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.详解:记执行第次循环时,的值记为有,则有;记执行第次循环时,的值记为有,则有.令,则有,故,故选B.点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和、前项积等).5、D【解析】

设,由,得,利用复数相等建立方程组即可.【详解】设,则,所以,解得,故,复数在复平面内对应的点为,在第四象限.故选:D.【点睛】本题考查复数的几何意义,涉及到共轭复数的定义、复数的模等知识,考查学生的基本计算能力,是一道容易题.6、D【解析】

用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.【详解】执行程序框图,可得,,满足条件,,,满足条件,,,满足条件,,,由题意,此时应该不满足条件,退出循环,输出S的值为.故选D.【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.7、A【解析】

作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【详解】①如图所示,过作平面,垂足为,连接,作,连接.由图可知,,所以,所以①正确.②由于,所以与所成角,所以,所以②正确.综上所述,①②都正确.故选:A【点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.8、C【解析】

函数的定义域应满足故选C.9、A【解析】

根据题意得到,化简得到,得到答案.【详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.10、B【解析】

甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得.【详解】由题意甲、乙租车费用为3元的概率分别是,∴甲、乙两人所扣租车费用相同的概率为.故选:B.【点睛】本题考查独立性事件的概率.掌握独立事件的概率乘法公式是解题基础.11、C【解析】

利用三角形与相似得,结合双曲线的定义求得的关系,从而求得双曲线的渐近线方程。【详解】设,,由,与相似,所以,即,又因为,所以,,所以,即,,所以双曲线C的渐近线方程为.故选:C.【点睛】本题考查双曲线几何性质、渐近线方程求解,考查数形结合思想,考查逻辑推理能力和运算求解能力。12、B【解析】

延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.【详解】解:延长到,使,连接,则四边形为平行四边形,则,,,在中,则,得,.故选:B.【点睛】本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

建系,将直线用方程表示出来,再用参数表示出线段的长度,最后利用导数来求函数最小值.【详解】以为原点,所在直线分别作为轴,建立平面直角坐标系,则.设直线,即,则,所以,所以,,则,则,当时,,则单调递减,当时,,则单调递增,所以当时,最短,此时.故答案为:【点睛】本题考查导数的实际应用,属于中档题.14、【解析】

画出不等式组表示的平面区域,将目标函数理解为点与构成直线的斜率,数形结合即可求得.【详解】不等式组表示的平面区域如下所示:因为可以理解为点与构成直线的斜率,数形结合可知,当且仅当目标函数过点时,斜率取得最大值,故的最大值为.故答案为:.【点睛】本题考查目标函数为斜率型的规划问题,属基础题.15、【解析】

作出可行域,将目标函数整理为可视为可行解与的斜率,则由图可知或,分别计算出与,再由不等式的简单性质即可求得答案.【详解】作出满足约束条件的可行域,显然当时,z=0;当时将目标函数整理为可视为可行解与的斜率,则由图可知或显然,联立,所以则或,故或综上所述,故答案为:【点睛】本题考查分式型目标函数的线性规划问题,属于简单题.16、-2【解析】

根据向量坐标运算可求得,根据平行关系可构造方程求得结果.【详解】由题意得:,解得:本题正确结果:【点睛】本题考查向量的坐标运算,关键是能够利用平行关系构造出方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)不存在,理由见解析【解析】

(1)写出,根据,斜率乘积为-1,建立等量关系求解离心率;(2)写出直线AB的方程,根据韦达定理求出点B的坐标,计算出弦长,根据垂直关系同理可得,利用等式即可得解.【详解】(1)由题可得,过点作直线交椭圆于点,且,直线交轴于点.点为椭圆的右顶点时,的坐标为,即,,化简得:,即,解得或(舍去),所以;(2)椭圆的方程为,由(1)可得,联立得:,设B的横坐标,根据韦达定理,即,,所以,同理可得若存在使得成立,则,化简得:,,此方程无解,所以不存在使得成立.【点睛】此题考查求椭圆离心率,根据直线与椭圆的位置关系解决弦长问题,关键在于熟练掌握解析几何常用方法,尤其是韦达定理在解决解析几何问题中的应用.18、(1)详见解析;(2).【解析】

(1)连接,,则且为的中点,又∵为的中点,∴,又平面,平面,故平面.(2)由平面,得,.以为原点,分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,设,则,,,,,.取平面的一个法向量为,由,得:,令,得同理可得平面的一个法向量为∵平面平面,∴解得,得,又,设直线与平面所成角为,则.所以,直线与平面所成角的正弦值是.19、(1);(2)证明见解析.【解析】

(1)求出函数的定义域为,,分和两种情况讨论,分析函数的单调性,求出函数的最大值,即可得出关于实数的不等式,进而可求得实数的取值范围;(2)利用导数分析出函数在上递增,在上递减,可得出,由,构造函数,证明出,进而得出,再由函数在区间上的单调性可证得结论.【详解】(1)函数的定义域为,且.当时,对任意的,,此时函数在上为增函数,函数为最大值;当时,令,得.当时,,此时函数单调递增;当时,,此时函数单调递减.所以,函数在处取得极大值,亦即最大值,即,解得.综上所述,实数的取值范围是;(2)当时,,定义域为,,当时,;当时,.所以,函数的单调递增区间为,单调递减区间为.由于函数有两个零点、且,,,构造函数,其中,,令,,当时,,所以,函数在区间上单调递减,则,则.所以,函数在区间上单调递减,,,即,即,,且,而函数在上为减函数,所以,,因此,.【点睛】本题考查利用函数的最值求参数,同时也考查了利用导数证明函数不等式,利用所证不等式的结构构造新函数是解答的关键,考查推理能力与计算能力,属于难题.20、(1)详见解析;(2).【解析】

(1)根据平面,四边形是矩形,由为中点,且,利用平面几何知识,可得,又平面,所以,根据线面垂直的判定定理可有平面,从而得证.(2)分别以,,为,,轴建立空间直角坐标系,得到,,,,分别求得平和平面的法向量,代入二面角向量公式求解.【详解】(1)证明:∵平面,∴四边形是矩形,∵为中点,且,∴,∵,,,∴.∴,∵,∴与相似,∴,∴,∴,∵,∴平面,∴平面,∵平面,∴,∴平面,∴.(2)如图,分别以,,为,,轴建立空间直角坐标系,则,,,设平面的法向量为,则,,解得:,同理,平面的法向量,设二面角的大小为,则.即二面角的余弦值为.【点睛】本题主要考查线线垂直、线面垂直的转化以及二面角的求法,还考查了转化化归的思想和推理论证、运算求解的能力,属于中档题.21、(1)的长为4(2)【解析】

(1)分别以所在直线为轴,建立如图所示的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论