复杂网络课件_第1页
复杂网络课件_第2页
复杂网络课件_第3页
复杂网络课件_第4页
复杂网络课件_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

复杂网络及其应用研究新进展学生:学号:复杂网络复杂网络的含义:我国著名科学家钱学森给出了复杂网络一个较严格的定义:具有自组织、自相似、吸引子、小世界、无标度中部分或全部性质的网络称为复杂网络。复杂网络的研究历史:哥尼斯堡七桥——>随机图论——>小世界和无标度网络自组织:如果一个系统靠外部指令而形成组织,就是他组织;如果不存在外部指令,系统按照相互默契的某种规则,各尽其责而又协调地自动地形成有序结构,就是自组织。自相似:一种形状的每一部分在几何上相似于整体,一般对分形而言。吸引子:相空间(可以表示出一个系统所有可能状态的空间)中稳定的不动点集。小世界:

无标度:小世界网络图无标度网络图网络分类规则网络:规则网络具有很强规则性,例如全连接网络,环形,链形,星形网络以及格点和分形图等

随机网络:随机网络是指按照某种明确的统计规律生成的网络,与规则网络相对应,主要是经典的随机图模型及其派生出来的相关模型

小世界网络:主要有WS改边小世界网络和NW加边小世界网络无标度网络:BA无标度网络是第一个无标度网络。我们将主要讨论此类网络上的同步与传播问题可导航网络随机图随机图是与规则网络相反的网络,一个典型模型是Erdos和Renyi于40多年前开始研究的随机图模型。假设有大量的纽扣(N》1)散落在地上,并以相同的概率p给每对纽扣系上一根线。这样就会得到一个有N个节点,约pN(N-1)/2条边的ER随机图的实例。1998,Watts和Strogatz:WS小世界网络WS小世界模型NW小世界模型C(p):平均聚集系数

L(p):平均最短路径小世界网络作为从完全规则网络向完全随机图的过渡,Watts和Strogtz于1998年引入了一个小世界网络模型,称为WS小世界模型。其构造算法如下:①从规则图开始:考虑一个含有N个点的最近邻耦合网络,它们围成一个环,其中每个节点都与它左右相邻的各K/2个节点相连,K是偶数。②随机化重连:以概率p随机地重连网络中的每个边,即将边的一个端点保持不变,而另一个端点取为网络中随机选择的一个节点。其中规定,任意两个不同节点之-间至多只能有一条边,并且每一个节点都不能有边与自身相连。具有较短的平均路径长度又具有较高的聚类系数的网络就称为小世界网络。

Newman和Watts提出了NW小世界模型,用“随机化加边”取代WS小世界模型构造中的“随机化重连”。算法如下:①从规则图开始:含有N个节点的最近邻耦合网络。②随机化加边:以概率P在随机选取的一对节点之间加上一条边。

NW小世界模型中,p=0对应于原来的最近邻耦合网络,p=1对应于全局耦合网络。无标度网络模型

研究发现许多复杂网络的连接度分布函数具有幂律形式,由于这类网络的节点的连接度没有明显的特征长度,故称为无标度网络。

Barabasi和Albert提出了一个无标度网络模型,称为BA模型。该模型考虑到了实际网络的两个重要特性:①增长特性;②优先连接特性。基于这两个特性,BA无标度网络模型构造算法如下:①增长:从一个具有m0个节点的网络开始,每次引入一个新的节点,并且连到m个已存在的节点上,这里。②优先连接:一个新节点与一个已经存在的节点i相连接的概率与节点i的度ki,节点j的度kj之间满足如下关系:

幂律分布函数的无标度性质:考虑一个概率分布函数f(x),如果对任意给定常数a,存在常数b使得函数f(x)满足如下“无标度条件”:f(ax)=bf(x)

那么必有(假定)

也就是说,幂律分布函数是唯一满足“无标度条件”的概率分布函数。复杂网络应用电力系统复杂网络的应用:电力系统复杂网络受到随意攻击细胞复杂网络的应用:

肺部细胞形成一个复杂网络因特网复杂网络的应用:

因特网形成的复杂网络交通运输复杂网络的应用:城市公共交通网道路交通网航空网复杂网络的统计特征度(degree):节点i的度

ki

定义为与该节点连接的其他节点的数目。

★直观上看,一个节点的度越大就意味着这个节点在某种意义上越“重要”(“能力大”)。

网络的平均度:网络中所有节点的度和的平均值,记作<k>。事实上,<k>=2q/p度分布函数p(k):随机选定节点的度恰好为k的概率

节点的聚类系数(簇系数):在简单图中,设节点v的邻集为N(v),|N(v)|=ki,则节点v的聚类系数定义为这ki个节点之间存在边数Ei与总的可能边数ki(ki-1)/2之比,即:Ci=2Ei/ki(ki-1)★节点v的邻点间关系的密切程度

网络的聚类系数C:所有节点i的聚类系数Ci的平均值。(0C1)

C=0网络中所有节点都是孤立点

C=1网络中任意节点间都有边相连

★网络节点间联系的密切程度,体现网络的凝聚力

★许多大规模的实际网络都具有明显的聚类效应。事实上,在很多类型的网络(如社会关系网络)中,你的朋友同时也是朋友的概率会随着网络规模的增加而趋向于某个非零常数,即当N→∞时,C=O(1)。这意味着这些实际的复杂网络并不是完全随机的,而是在某种程度上具有类似于社会关系网络中“物以类聚,人以群分”的特性。介数(Betweenness)★点介数:网络中通过该节点的最短路径的条数★

边介数:网络中通过该边的最短路径的条数★反映了节点或边的作用和影响力。如果一对节点间共有B条不同的最短路径,其中有b条经过节点i,那么节点i对这对节点的介数的贡献为b/B。把节点i对所有节点对的贡献累加起来再除以节点对总数,就可得到节点i的介数。类似的,边的介数定义为所有节点对的最短路径中经过该边的数量比例。★介数越大,说明经过该节点(边)的最短路径越多。在信息传播过程中,通过该节点(边)的信息量就越大,于是就越容易发生拥塞。

★研究表明,节点介数与度之间有很强的相关性,不同类型的网络,其介数分布也大不一样。网络介数

★网络点介数,网络边介数:所有节点(边)的平均介数

★网络介数说明了网络的什么性质

核数

★一个图的k-核:反复去掉图中度小于k的节点后,所剩余的子图★若一个节点存在于k-核,而在(k+1)-核中被去掉,则此节点核数为k★节点核数中的最大值称为网络图的核数★节点核数可以表明节点在核中的深度;即便一个节点的度数很高,它的核数也可能很小。例如:包含N个节点的星型网络的中心节点的度数为N-1,但它的核数为1

复杂网络的研究内容1)复杂网络模型典型的复杂网络:随机网、小世界网、无标度网等;实际网络及其分类。2)网络的统计量及与网络结构的相关性度分布的定义和意义,聚集性、连通性的统计量及其实际意义等。3)复杂网络性质与结构的关系同步性、鲁棒性和稳定性与网络结构的关系。4)复杂网络的动力学信息传播动力学、网络演化动力学、网络混沌动力学。5)复杂网络的复杂结构社团结构、层次结构、节点分类结构等。6)网络控制关键节点控制、主参数控制和控制的稳定性和有效性。7)复杂网络建模机理建模、数据建模和实际系统的复杂网络正向与逆向建模。8)复杂逻辑网络逻辑与高阶逻辑定义、分类、判定算法,高阶逻辑的实际意义等等。影响复杂网络拓扑结构性能的因素:密度:只要某个社区的密度超过阈值,停止该社区的聚合。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论