版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
倒卖拉黑,关注更新免费领取,淘宝唯一每月更新店铺:知二教育试卷第=page22页,总=sectionpages22页倒卖拉黑,关注更新免费领取,淘宝唯一每月更新店铺:知二教育2020—2021学年高二数学下学期6.1分类加法计数原理与分布乘法计数原理专项训练一、单选题(共12题;共60分)1.把5名同学分配到图书馆、食堂、学生活动中心做志愿者,每个地方至少去一个同学,不同的安排方法共有()种.A.60 B.72 C.96 D.1502.从5名志愿者中选出4人分别到、、、四个部门工作,其中甲、乙两名志愿者不能到、二个部门工作,其他三人能到四个部门工作,则选派方案共有()A.120种 B.24种 C.18种 D.36种3.现有四名高三学生准备高考后到长三角城市群(包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”)旅游,假设每名学生均从上海市、江苏省、浙江省、安徽省这四个地方中随机选取一个去旅游,则恰有一个地方未被选中的概率为()A. B. C. D.4.将5种不同的花卉种植在如图所示的四个区域中,每个区域种植一种花卉,且相邻区域花卉不同,则不同的种植方法种数是().A.420 B.180 C.64 D.255.在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在、、三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有A.种 B.种C.种 D.种6.用红、黄、蓝、绿、橙五种不同颜色给如图所示的5块区域、、、、涂色,要求同一区域用同一种颜色,有共公边的区域使用不同颜色,则共有涂色方法()A.120种 B.720种 C.840种 D.960种7.从20名同学中选派3人分别参加数学、物理学科竞赛,要求每科竞赛都有人参加,而且每人只能参加一科竞赛.记不同的选派方式有n种,则n的计算式可以是()A. B. C. D.8.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”.现提供4种颜色给“弦图”的5个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()A.48种 B.72种 C.96种 D.144种9.某晚会上某歌舞节目的表演者是3个女孩和4个男孩.演出结束后,7个人合影留念(3个人站在前排,4个人站在后排),其中男孩甲、乙要求站在一起,女孩丙不能站在两边,不同站法的种数为()A.96 B.240 C.288 D.43210.如图所示,将四棱锥S-ABCD的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种色可供使用,则不同的染色方法种数为()A.240 B.360 C.420 D.96011.用6个字母编拟某种信号程序(大小写有区别),把这6个字母全部排列如图所示的表格中,每个字母必须使用且只使用一次,不同的排列方式表示不同的信号,如果恰有一对字母(同一个字母的大小写)排到同一列的上下格位置,那么称此信号为“微错号”,则不同的“微错号”的总数为A.144 B.288 C.432 D.57612.如图,用6种不同的颜色把图中A,B,C,D四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为()A.400 B.460 C.480 D.496二、填空题(共4题;共20分)13.已知关于的方程有且仅有一个实数根,其中互不相同的实数、、、,且,则、、、的可能取值共有________种.(请用数字作答)14.已知当|时,有,根据以上信息,若对任意都有则______.15.给图中A,B,C,D,E,F六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有___种不同的染色方案.16.如图,甲从A到B,乙从C到D,两人每次都只能向上或者向右走一格,如果两个人的线路不相交,则称这两个人的路径为一对孤立路,那么不同的孤立路一共有________对.(用数字作答)三、解答题(共4题;共20分)17.有四个编有1、2、3、4的四个不同的盒子,有编有1、2、3、4的四个不同的小球,现把四个小球逐个随机放入四个盒子里.(1)小球全部放入盒子中有多少种不同的放法?(2)在(1)的条件下求恰有一个盒子没放球的概率?(3)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?18.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,有多少种不同的排法;(2)如果女生必须全分开,有多少种不同的排法.19.用0,1,2,3,4,5这六个数字,完成下面三个小题.(1)若数字允许重复,可以组成多少个不同的五位偶数;(2)若数字不允许重复,可以组成多少个能被5整除的且百位数字不是3的不同的五位数;(3)若直线方程中的a,b可以从已知的六个数字中任取2个不同的数字,则直线方程表示的不同直线共有多少条?20.冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.而今年出现的新型冠状病毒(nCoV)是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.应国务院要求,黑龙江某医院选派医生参加援鄂医疗,该院呼吸内科有3名男医生,2名女医生,其中李亮(男)为科室主任;该院病毒感染科有2名男医生,2名女医生,其中张雅(女)为科室主任,现在院方决定从两科室中共选4人参加援鄂医疗(最后结果用数字表达).(1)若至多有1名主任参加,有多少种派法?(2)若呼吸内科至少2名医生参加,有多少种派法?(3)若至少有1名主任参加,且有女医生参加,有多少种派法?倒卖拉黑,关注更新免费领取,淘宝唯一每月更新店铺:知二教育答案第=page11页,总=sectionpages22页倒卖拉黑,关注更新免费领取,淘宝唯一每月更新店铺:知二教育参考答案1.D【详解】5名同学分成组,有两种情况,故共有种分组方式,再将他们分配到图书馆、食堂、学生活动中心有种方式,根据分步乘法计数原理可知,不同的安排方法共有种.故选:D.2.D【详解】解:根据题意,分两种情况讨论:①、甲、乙中只有1人被选中,需要从甲、乙中选出1人,到,中的一个部门,其他三人到剩余的部门,有种选派方案.②、甲、乙两人都被选中,安排到,部门,从其他三人中选出2人,到剩余的部门,有种选派方案,综上可得,共有24+12=36中不同的选派方案,故选D.3.B【详解】四名学生从四个地方任选一个共有种选法,恰有一个地方未被选中,即有两位学生选了同一个地方,另外两名学生各去一个地方,考虑先分堆在排序共有种,所以恰有一个地方未被选中的概率为.故选:B4.B【详解】由题意,由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行区域有5种涂法,有4种涂法,,不同色,有3种,有2种涂法,有种,,同色,有1种涂法,有3种涂法,有种,共有180种不同的涂色方案.故选:B.5.D【详解】根据题意,分2步进行分析:
①、五个参会国要在a、b、c三家酒店选择一家,且这三家至少有一个参会国入住,
∴可以把5个国家人分成三组,一种是按照1、1、3;另一种是1、2、2
当按照1、1、3来分时共有C53=10种分组方法;
当按照1、2、2来分时共有种分组方法;
则一共有种分组方法;
②、将分好的三组对应三家酒店,有种对应方法;
则安排方法共有种;
故选D.6.D【详解】法一:有5种颜色可选,有4种颜色可选,有3种颜色可选,若同色,有4种颜色可选;若同色,有4种颜色可选;若与、都不同色,则有2种颜色可选,此时有4种颜色可选,故共有种.法二:当使用5种颜色时,有种涂色方法;当使用4种颜色时,必有两块区域同色,可以是,,,,,共有种涂色方法;当使用3种颜色时,只能是同色且同色,同色且同色,同色,同色,共有种涂色方法,∴共有种涂色方法.故选:D.7.B【详解】由题意,从20名同学中选派3人,共有种不同的选法,又由要求每科竞赛都有人参加,而且每人只能参加一科竞赛,可分为两类:第一类:2人参加数学,1人参加物理竞赛,共有中不同的选法;第二类:1人参加数学,2人参加物理竞赛,共有中不同的选法,综上可得,不同的选派方式共有.故选:B.8.B【详解】解:根据题意,如图,假设5个区域依次为,分4步分析:①,对于区域,有4种涂法,②,对于区域,与相邻,有3种涂法,③,对于区域,与相邻,有2种涂法,④,对于区域,若其与区域同色,则有2种涂法,若区域与区域不同色,则有1种涂法,则区域有2+1=3种涂色方法,则不同的涂色方案共有4×3×2×3=72种;故选:B.9.D【详解】(1)男孩甲、乙站在前排,则女孩丙站在后排,前排的站法种数为,后排的站法种数为,此种情况共有种站法.(2)男孩甲、乙站在后排,①若女孩丙站在前排,则此时共有种站法,②若女孩丙站在后排,则此时共有种站法.综上,满足题意的站法共有(种).故选:D.10.C【详解】由题设,四棱锥S-ABCD的顶点S、A、B所染的颜色互不相同,它们共有种染色方法.设5种颜色为1,2,3,4,5,当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法,若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有(种).故选:C11.B【详解】根据题意分析,分三步进行:(1)先选定排列到同一列上下格位置的一对字母,有种情况,再将其放入表格中,有种情况,再考虑这一对字母的顺序有种不同的顺序;(2)再分析第二对字母,假设(1)中选定的为,则剩下的两组字母中选一组有种情况,再将其放入表格中有种不同结果,再考虑这一对字母的顺序有种不同的顺序;(3)最后一对字母放入最后两个位置有种不同的排法.所以共有个“微错号”.故选:B.12.C【解析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有种方法,用四种颜色涂色时,有种方法,根据分类计数原理得到结果.详解:只用三种颜色涂色时,有种方法,用四种颜色涂色时,有种方法,根据分类计数原理得不同涂法的种数为120+360=480.故答案为C.13.【详解】方程有且只有一个实根,由绝对值三角不等式可得,,因为,考虑,,因为,,作出函数与函数如下图所示:则有或.若,则的可能情况有:、、;若,则可能的情况有:、;若,则;若,则.考虑、的大小,有种情况;考虑、的大小,有种情况;考虑、的位置,有种情况.综上所述,、、、的可能取值共有种.故答案为:.14.910【详解】解:当时,有,①当时,有,②又对任意,都有,即为的系数,可取①中的,②中的1;或①中,②中的;或①中的,②中的;或①中的,②中的;,故答案为:910.15.96【详解】解:要完成给图中、、、、、六个区域进行染色,染色方法可分两类,第一类是仅用三种颜色染色,即同色,同色,同色,则从四种颜色中取三种颜色有种取法,三种颜色染三个区域有种染法,共种染法;第二类是用四种颜色染色,即,,中有一组不同色,则有3种方案不同色或不同色或不同色),先从四种颜色中取两种染同色区有种染法,剩余两种染在不同色区有2种染法,共有种染法.由分类加法原理得总的染色种数为种.故答案为:96.16.1750【详解】甲从A到B,需要向右走4步,向上走4步,共需8步,所以从A到B共有种走法,乙从C到D,需要向右走4步,向上走4步,共需8步,所以从A到B共有种走法,根据分步乘法计数原理可知,共有不同路径对,甲从A到D,需要向右走6步,向上走4步,共需10步,所以从A到D共有种走法,乙从C到B,需要向右走2步,向上走4步,共需6步,所以从C到B共有种走法,所以相交路径共有对,因此不同的孤立路一共有对.故答案为:175017.(1)种;(2);(3)种.【详解】(1)每个球都有4种方法,故有种(2)从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,故共有种不同的放法.概率为:(3)每个盒子不空,共有,种.18.(1)4320;(2)14400【详解】(1)由题意,女生必须全排在一起,利用捆绑法有种不同的排法;(2)女生必须全分开,利用插空法有种不同的排法19.(1)3240个(2)174个(3)20条【详解】(1)由题意,数字允许重复,根据分步计数原理,可得不同的五位偶数共有:(个).(2)当首位数字是5,而末位数字是0时,有(个);当首位数字是3,而末位数字是0或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能出行服务合同
- 2024年脑康素项目可行性研究报告
- 2024某广告公司与广告代言人关于广告拍摄的合同
- 2024年电竞设备租赁合同
- 2025年度高科技企业IT员工知识产权保护保密协议3篇
- 2024建筑施工合同工程款支付及进度款
- 2025年度风力发电机组安装与运维合同范本6篇
- 2024绿化带维护与管理服务长期合同
- 二零二五年度城市基础设施建设合同标的:道路建设、公共设施设计与施工3篇
- 二零二五年度土地财产抵押借款反担保协议范本3篇
- 报关企业申请预归类资质流程
- 2024年四川省内江市中考英语试题(含答案)
- 平安产险云南省商业性桑蚕养殖保险条款
- 股权协议书和合伙人协议书
- 全媒体访谈方案
- 河南省驻马店市2023-2024学年高一上学期1月期末语文试题(含答案解析)
- 幼儿园名师公开课:小班安全《超市安全我知道》微课件
- MOOC 英文技术写作-东南大学 中国大学慕课答案
- 老年人肥胖症的特点与保健方法
- 2022年10月自考00850广告设计基础试题及答案含解析
- 工会委员会会议纪要
评论
0/150
提交评论