版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DEMYSTIFYINGARTIFICIALINTELLIGENCEINTRANSPORTATIONCYBERSECURITY
URBANJONSON,SVPITANDCYBERSECURITYSERVICES,SERJON
Copyright©SERJON,LLC2024.Allrightsreserved.
URBANJONSON
ujonson@
Current
SVPInformationTechnologyandCybersecurityServices,SERJON,LLC
USFBIInfraGardTransportationSubjectMatterExpert
FBIAutomotiveSectorSpecificWorkingGroup(SSWG)
BoardofDirectors,CyberTruckChallenge
ProgramCommittee,ESCARUSA
SAEVehicleElectricalSystemSecurityCommitteeMember
Technology&MaintenanceCouncil(TMC)S.5andS.12StudyGroupMember
Experience
Over35yearsofexperienceinITandCybersecurity,includingstrategicplanning,assessments,projectmanagement,andprogrammanagement
Variouspapers,talks,andresearchonhacking,aswellasdefendingtrucksandtransportationingeneral
Abusinganddefendingsystemssincethe1980s
Copyright©SERJON,LLC2024.Allrightsreserved.
AGENDA
•AIOverview
•AITaxonomy
•ChallengeswithAI
•CommonAImistakes
•TransportationApplications
•AttackingAI
•DefendingAI
•Wrap-up
ImagegeneratedbyBingImageCreator
Copyright©SERJON,LLC2024.Allrightsreserved.
AIOVERVIEW
Copyright©SERJON,LLC2024.Allrightsreserved.
HISTORICALOVERVIEW
•1950s–BirthofAI
•AlanTuringandotherslaidthegroundworkformachineintelligence
•1960s–EarlyApplications
•Problem-solvingandsymbolicreasoning,e.g.playingchess
•1980s–ExpertSystems
•Programsdesignedtomimichumanexpertise,e.g.taxsoftware
•1990s–MachineLearningResurgence
•NeuralnetworksandnewalgorithmsrevitalizeinterestinAI
Copyright©SERJON,LLC2024.Allrightsreserved.
HISTORICALOVERVIEW
•2000s–RiseofBigData
•Availabilityoflargedatasetsandimprovedcomputingpower
•2010s–DeepLearningDominance
•Multi-layeredneuralnetworkscapableofimagerecognition,speechrecognition
•2020s–GenerativeAI
•NewLargeLanguageModels(LLM)builtonmassivedatacloudplatformscapableofgeneratingimages,code,andother
content(ChatGPT,BingImageCreator,etc.)basedoninputprompts
Copyright©SERJON,LLC2024.Allrightsreserved.
TECHNICALOVERVIEW
UNDERSTANDABLEVSPREDICTIVEPOWER
Image:NationalCyberSecurityCentre(UK)-Principlesforthesecurityofmachinelearning
[.uk/collection/machine-learning]
Copyright©SERJON,LLC2024.Allrightsreserved.
MACHINELEARNINGAPPLICATIONS
Commonmachine
learninganalytic
applications
Image:
/science/article/pii/S0951832021003835
Copyright©SERJON,LLC2024.Allrightsreserved.
ARTIFICIALNEURALNETS
Thecorecomponent
ofneuralnetsisthe
artificialneuron
Conceptuallycanbethoughtofasamini
linearregressionmodel
Image:
/blog/artificial-neural-networks-basics-guide/
Copyright©SERJON,LLC2024.Allrightsreserved.
TRAININGMETHODS
Image:
/science/article/pii/S0951832021003835
Copyright©SERJON,LLC2024.Allrightsreserved.
MODELTRAINING
Simplesupervisedlearning
Imagesareconvertedintonumericaldatausuallybyflatteningintoavector
Image:
/@MITIBMLab/estimating-information-flow-in-deep-neural-networks-b2a77bdda7a7
Copyright©SERJON,LLC2024.Allrightsreserved.
AITAXONOMY
Copyright©SERJON,LLC2024.Allrightsreserved.
OVERVIEW
NISTAIUseTaxonomy*:
•Decomposescomplexhuman-AItasksintoactivitiesthatareindependentoftechnologicaltechniques(e.g.,neural
network,largelanguagemodel,reinforcementlearning)anddomains(e.g.,finance,medicine,law).
•ProvidesaflexiblemeansofclassifyinganAIsystem’scontributiontoaspecifiedhuman-AItask.
•Intendedtobealivingdocumentthatisupdatedperiodicallywithfeedbackfromstakeholders,suchasthoseintheAI
evaluationandhumanfactorscommunities.
*NISTTrustworthyandResponsibleAINISTAI200-1,AIUseTaxonomy:AHuman-CenteredApproach,byTheofanos,Choong,andJenson,March2024,
/10.6028/NIST.AI.200-1
.
Copyright©SERJON,LLC2024.Allrightsreserved.
AITAXONOMY-TRANSPORTATION
•Connectionist–Learningalgorithmsbasedonneuralnetworks
•Bayesians–Probability-basedinferencesystems
•Symbolists–Logic-basedalgorithmssuchasrules-based
programming,decisiontrees,fuzzylogic,andrationalagents
•Analogizers–Similarity-basedclassifiers,suchassupportvectormachines
•Optimizations–Algorithmsperformingiterativeupdatesand
comparisonstodiscoveroptimumsolutions,e.g.GeneticAlgorithm(GA)
JonPerez-Cerrolaza,JaumeAbella,MarkusBorg,CarloDonzella,JesúsCerquides,FranciscoJ.Cazorla,CristoferEnglund,MarkusTauber,GeorgeNikolakopoulos,andJoseLuisFlores.
2024.ArtificialIntelligenceforSafety-CriticalSystemsinIndustrialandTransportationDomains:ASurvey.ACMComput.Surv.56,7,Article176(July2024),40pages.
/10.1145/3626314
Copyright©SERJON,LLC2024.Allrightsreserved.
CHALLENGESWITHAI
Copyright©SERJON,LLC2024.Allrightsreserved.
NON-DETERMINISTIC
•Thesameinputswillnotalwaysgeneratethesameoutputs
•Randomdataselectionbasedonprobabilitycurves
•Anytimeyouaddrandomdataselectioninconnectionistmodels,youruntheriskofnon-deterministicoutcomes
•Ifyourmodelcontinuestolearn,forexamplelinearregression,theoutputswillvaryovertimeasmodellearns
•Expertsystemsgenerallydonotsufferfromthisproblem,butanything
thathasaneuralnetworkwillruntherisk
Copyright©SERJON,LLC2024.Allrightsreserved.
INSCRUTABLE
•ThemathandcodeforAIiscompletelyunderstandable…..and“human-ish”readable
•Thedatathatyouusetotrainthemodelis
understandable(hopefully,ifyouhavedoneyourjobright)
•Theproblemiswhenyouusethecodetogenerateamodelbasedonthedata
•Duetohowthemodellearns(developingacomplexwebofprobabilisticweights)andisexpressed,itisnot
possibletolookatthemodelandunderstandhowitworks
Copyright©SERJON,LLC2024.Allrightsreserved.
UNEXPLAINABLE
•Sincethemodelisnon-deterministicandinscrutable,itisnoteasilyunderstood
•Makesexplaining“why”amodelproducedtheexactoutputexceedinglydifficultfor
neuralnetworks
•ExplainableandTrustworthyAIisanareaofintenseresearch
•TrustworthyAIcangenerateatrusted
explanationthathumanscanunderstand
Copyright©SERJON,LLC2024.Allrightsreserved.
WHYTHEPROBLEM?
•Layeredneuralnetworks
•Randomlygeneratedvalues
•Probabilisticevaluations
•Deeplearningisstatisticswithlinearalgebra
Image:
/tutorial/introduction-to-deep-neural-networks
Copyright©SERJON,LLC2024.Allrightsreserved.
DATAPROBLEM
•Ourmodelsareonlyasgoodasourdata
•Transportationdatasetsareintheirinfancy
•Wearestillinthegreat“dataownership”battle
•Ourvehicleplatformslackthesensorstocollectthenecessaryinformation(possible
exception…Tesla)
•Modelsareverylimitedinwhattheycando
Copyright©SERJON,LLC2024.Allrightsreserved.
TRANSPORTATIONDATASAMPLES
•Lackofinstrumentation
•Teslaprobablyhasbestdataset
•VehicleISasensorplatform
•Designedtocollectalldata
•Driversprovidingexperience
•Robottaxifleetdata2ndplace
•Cruise
•Waymo
•ProprietaryDataSources
•OEMdata
•Telematicsdata
•Vehicle/Fleetoperatordata
•OpenData
•PIVOT(
/
)
•EUDataAct
•ColoradoStateUniversity
Copyright©SERJON,LLC2024.Allrightsreserved.
TRAININGDATAPROBLEM
•DeeplearningandLLMsrequiremassivedatasetsforlearningandvalidation
•LLMs,suchasChatGPT,haveusedagreatdealofinternetcontent
•Manyimages,text,books,etc.usedinlearningmodelsarecopyrightedmaterials
•IsgeneratinganAImodelbasedonsomeoneelse’swork
a“fairuse”ofcopyrights?
•WhatiftheresultingAIismonetized?
•Howdoyouremoveonepartorsegmentoftrainingdataonceamodelhasbeencreated?
Copyright©SERJON,LLC2024.Allrightsreserved.
EDGECASES
•Edgecasesarestatisticaloutliereventsthatarenotpartofthetrainingdata
•Thoughtheymayberare,theycan
resultinunexpectedandundesirableoutcomes
•Edgecasesarewheretragedylives
Copyright©SERJON,LLC2024.Allrightsreserved.
Source:Projectguru.in
UBER
•UberAutonomousCrashMarch2018
•Pedestrianwalkingbicycleacrosstheroad
•Vehicleidentifiesandtrackspedestrian
•Vehicledoesnotbreak
•Safetydriverwasdistractedanddidnotact
•Factoryauto-breakingsystemdisabledsoasnottointerferewith
automateddrivingsoftware
•Exampleoflimitationsofdataandwhathappenswhennotfollowingfunctionalsafetybestpractices
Copyright©SERJON,LLC2024.Allrightsreserved.
CRUISE
•CruiseaccidentOctober2023
•Pedestriancrossesroadagainstdonotwalksignal
•Pedestriangetshalfwayacrossbeforecrosstrafficforcespedestriantowalkback
•Pedestrianhitbyacarandthrownintothepathofcruisevehicle
Copyright©SERJON,LLC2024.Allrightsreserved.
CRUISE
•Cruisevehicleisacceleratingeventhoughit“sees”pedestrian
•Vehicledoesnotrecognizescenario(edgecase)
•PedestriangetstrappedundertheCruisevehicle
•Vehiclesystemrecognizessomethingiswrong
•Insteadofstopping,thevehicledrivesforwardandpullsover,draggingthepedestrianunderthecar
•Whynotstop?
•Exampleoflimitationsofdataandwhathappenswhennotfollowingfunctionalsafetybestpractices
Copyright©SERJON,LLC2024.Allrightsreserved.
COMMONAIMISTAKES
Copyright©SERJON,LLC2024.Allrightsreserved.
LACKOFUNDERSTANDINGMODELS
•Mathishard,andlibrariesareeasy
•ThereareTONSofdifferentAImodelsandapproaches
•
TensorFlowiseasyandrequiresalmostnothinking
•
•
AnacondaextendsaccesstoeveryonewhocanPythonAmodelorimplementationinsearchofaproblem
•
Sometimes,neuralnetworksarenotthebestsolution
•
OftenseeproblemssolvedwithMLthatshouldbesolvedbyexpertsystems
•
Lackofunderstandingoflimitations
•
DisconnectbetweenAIandfunctionalsafety
Copyright©SERJON,LLC2024.Allrightsreserved.
DATASCIENCEDISCIPLINE
•Traditionalprogrammingisbasedonrequirements
•AIisbasedonDATA,whichmakesdatasciencecritical
•“Garbagein,garbageout”x1000
•Acommonerroristhatdatasciencelifecyclenotfollowed
•Smalldatasetsforlearningandvalidationareproblematic
•Lackofproperlysizeddatasetsleadto:
•Overfitmodelschasingaccuracy
•Falseminimaandmaximaforoptimizationproblems
•Higherprobabilityeventsarenotincludedinthemodel
•Significantmisclassificationscomparedtoreal-worlddata
Copyright©SERJON,LLC2024.Allrightsreserved.
Experimentationandprediction
DATASCIENCELIFECYCLE
preparation
Data
Explorationandvisualization
•Datacollectionandstorage
•Defineprojectobjectives
•Collectdata
•Normalizestorageandformat
•Explorationandvisualization
•Statisticaldataanalysis
•Datalabeling
•Datapreparation
•Missingorinconsistentdata
•Cleaningandaugmentingdata
•Removingduplicates
•Normalization
•Datalabeling
•Datatypeconversation
•Graphsandchartsforunderstanding
•Experimentationandprediction
•Trydifferentmodelsandapproaches
•Identifydatatrendsandpatterns
•Discoverinsights
•Buildmodel
Data
collection/storage
Source:
/blog/what-is-data-science-the-definitive-guide
Copyright©SERJON,LLC2024.Allrightsreserved.
TRANSPORTATIONAPPLICATIONS
Copyright©SERJON,LLC2024.Allrightsreserved.
ASSISTINGDRIVERS
•Safety-related“assistant”applicationstoreduceimpairedordistracteddriving
•Lane-keepingassist
•Intelligentcruisecontrol
•Automaticemergencybraking
•Limitcellphoneusewhiledriving(cellphone“drivingmode”)
•Limitcellphonedistractionsviapredictivebehaviororvehicleintegration
•Bettermusicplaylistprediction
•Bettermapsanddirections
•Recognizeimpaireddriving
•Inallthesescenarios,thedriverisstillthemaincontrollingactor
Copyright©SERJON,LLC2024.Allrightsreserved.
ANOMALY/ERRORDETECTION
•Vehiclepredictivemaintenance
•Batterylife
•Tirewear
•Many,manymore…..
•MotorfreightcarriersandTSPs
•Analyzebatteryvoltages
•Exhaustsensors
•Noiseandvibrationsensors
•CANbusmessages
•IntermittentDTCs
Copyright©SERJON,LLC2024.Allrightsreserved.
ANOMALY/ERRORDETECTION
•Vehiclecybersecurity[atscale]
•VSOC
•Faultpatterns
•Geolocationtrends
•IndividualvehicleIDSstillproblematic
•Lackoftrainingandvalidationdata
•Rule-basedexpertsystemsareprobablymoreeffective
•CompanionroleforML(seefunctionalsafety“safetybag”examples)
Copyright©SERJON,LLC2024.Allrightsreserved.
GENERALTRANSPORTATION
•TherearemanyapplicationsofAIinTransportationManagementSystems(TMS)andTrafficManagementSystems(TMS)
•Freightmovementoptimization
•Fuelconservation
•Mostefficientroutecalculations
•Trafficmanagement
•Parkingefficiencyandoptimization
Copyright©SERJON,LLC2024.Allrightsreserved.
FUNCTIONAL-SAFETY
•Functionalsafetyiswell-knownpracticewithspecificrulesandknownapproachestoachievingsafety
•Mitigationtechniquestodealwithuncertainty
•Safetybag(thinkinput/outputparametervalidation)
•Safetymonitors
•Diagnostics
•Formalmethods
•Functionalsafetysystemslikecrashavoidanceandlanedepartureassistthatcontainclassifiermodelsarenotprimarysafetysystems
•Driverremainstheprimarysafetysystemincontrolofthevehicle
Copyright©SERJON,LLC2024.Allrightsreserved.
FUNCTIONAL-SAFETY
•Neuralnetwork-basedAIisapoorchoiceforfunctionalsafetysystems
•Testingmassivelycomplexnon-deterministicsystemsisalmostimpossible
•Caveat:FormalmethodscombinedwithML
•Impossibletoexplainwhyamodelbehavesinacertainway
•Introducessafetyrisksandmassivelegalliabilities
Copyright©SERJON,LLC2024.Allrightsreserved.
AUTONOMOUSVEHICLES
•ExistingMLmodelsareunsuitableforSAELevel3–5automation
•Wedonothavethedatatousethemeffectively
•CurrentMLmodelsarenotexplainableortrustworthy
•MoreadvancedMLmodelsarenon-deterministic
•MLissuitableforclassifiersandpreceptorsbutnotatthe
accuracyrequiredforfunctionalsafety
•Closedandcontrolledenvironmentsarepossible
•Real-worldpublicroadsandadversarialenvironmentsaretoocomplexwheresafetystandardscannotbemet
Image:createdbymonkik
Copyright©SERJON,LLC2024.Allrightsreserved.
ATTACKINGAI
Copyright©SERJON,LLC2024.Allrightsreserved.
ATTACKINGAI
•Traditionaltechniquesarestillapplicable
•Denialofserviceattacks
•Softwarestackvulnerabilitiesandexploits
•Hostingandruntimeenvironmentexploitation
•Socialengineering
•TherearenewattackmethodstargetingAI
•MITREAdversarialThreatLandscapeforAI
•OWASPTop10MachineLearningRisks
Copyright©SERJON,LLC2024.Allrightsreserved.
Systems(ATLAS™)
CLASSIFICATIONINPUTMANIPULATION
•Modificationofaninput(e.g.image,sensorvalue)tocause:
•Misclassification
•Triggererrorconditions
•Alterintendedbehavior(inference-basedsystems)
•Acommonexampleisstopsign“modification”:
•Addingtapetocausemisclassification
•Shiningbrightlightsalteringgradientanalysis
•Alargenumberofacademicpapersonhowtomessuptrafficsignalinputs
•FewMLmodelsareimmune
•Distinctfrompromptmanipulation(coveredlater)
Copyright©SERJON,LLC2024.Allrightsreserved.
EXPLOITEDGECASES
•Limitationsofavailabledataallowedgecaseexploitation
•Analyzethemodelanddeterminelow-probabilityinputs
•UseanAItofuzzanotherAImodeltodeterminelimitations
•Causethemodeltobehaveincorrectlyorevencrash
•Especiallyeffectiveifinputandoutputvaluesarenotvalidatedandboundschecked
•Maycausesystemfailureorsoftwarestackmalfunction
•Errorconditionscancauseremotecodeexecutionordataexfiltrationopportunities
Copyright©SERJON,LLC2024.Allrightsreserved.
PROMPTINJECTION/MANIPULATION
•ApplicabletoLLMmodelswhichgenerateoutputbasedonprompts
•OnewaytothinkofthisisasSQLInjectionattacks,butinsteadoftargetingaSQLDB,theunderlyingmodelistargeted
•Injection/promptattackscancause:
•Datadisclosure
•Modelcorruption
•Hostingsystemcorruption
•Bypasssafetyorcontentrestrictions
•Wecanalsousesocialengineeringtrickstogetthemodeltodothingsitisnotsupposedtodo(hardastrickinga4yrold)
Copyright©SERJON,LLC2024.Allrightsreserved.
TRAININGDATAPOISONING
•AImodelsarebuiltfromthetrainingdata
•Duetolackoftrainingdata,manytrainingsetsarebasedonpublicdatasources
•Poisoningapublicdatasetcanintroduce
•Backdoors
•Remotecodeexecutionerrors
•Anynumberofmalwarescenarios
•Feedingmaliciousdataintoacontinuouslearningmodelcancausemodeldriftandeventualmodelfailure
•ContinuouslylearningIDSsystems
•Self-optimizingmodels
Copyright©SERJON,LLC2024.Allrightsreserved.
HACKING
EXAMPLE
Copyright©SERJON,LLC2024.Allrightsreserved.
HACKINGADASMODEL
•BlackhatAsia2024-TheKeytoRemoteVehicleControl:AutonomousDrivingDomainController
•ShupengGao,SeniorSecurityResearcher,Baidu
•YingtaoZeng,SeniorSecurityResearcher,Baidu
•JieGao,SeniorSecurityResearcher,Baidu
•YimiHu,SeniorSecurityResearcher,Baidu
•Analyzedover30ADASdevices
•50%hadSHHenabled
•Somedeployedwithoriginalmodelfiles(*.onnx)
•Littleornodiskencryption
/asia-24/briefings/schedule/index.html#the-key-to-remote-vehicle-control-autonomous-driving-domain-contr
oller-38089
Copyright©SERJON,LLC2024.Allrightsreserved.
HACKINGADASMODEL
•ADASunitcanbeapathwaytototalvehiclecompromiseasitneedstobeaccessibleonCANnetworkandupdateable
•Researchers:
•Abletooffloadentiremodelfiles,includingoriginalmodelfiles
•Abletoreadthemodelanddeployina$50toycar
•Possibletoupdatemodelonoriginaldevice
•PoorlysecuredADASmodulecanleadtototalvehiclecontrol
•Steering
•Braking
•Powertrain
Copyright©SERJON,LLC2024.Allrightsreserved.
DEFENDINGAI
Copyright©SERJON,LLC2024.Allrightsreserved.
AI-WHATISTHESAME?
Themorethingschange,themoretheyremainthesame:
•Softwarestackvulnerabilities
•Operatingsystemvulnerabilities
•Softwaresupplychainattacks
•Hardwarefirmware
•PlatformOS
•Browservulnerabilities
•ITandDevSecOpsbestpracticesstillapply
•Sanitizeandvalidateinputsandoutputs
Copyright©SERJON,LLC2024.Allrightsreserved.
AI-WHAT’SDIFFERENT?
•Systemsarebuiltgroundupfromdata,notrequirements
•Awholenewmindsetforadversarialattackvectors
•Increasedsupplychaincomplexity
•Inputvalidationbecomesharderandmoreimportant
•Datahandlingproceduresaremoreimportant
•Erroneous,mislabeled,orincompletedatacanhavebigimpact
•DevSecOpsneedstoincorporatedataandmachinelearningmodels
•Datascientistsneedtounderstandcybersecurity
Copyright©SERJON,LLC2024.Allrightsreserved.
AI–DEFENSIVEBESTPRACTICES
Whilenotanexhaustivelist,herearesomebestpractices:
•ProtectsystemboundariesbetweenITandAI
•Identifyandprotectallproprietarydata
•StrongaccessandauthorizationcontrolsforfinalAImodelweights
•Hardenthedeploymentenvironment
•Applyversionlabelstomodels(changestoweights)
•Validateallinputsforedgecasesandattacks
•Validatealloutputstoensureoperationinsideboundaries(safetybag)
Copyright©SERJON,LLC2024.Allrightsreserved.
DEFENSIVERESOURCES
ThereareseveralrecentgoodpublicationsoncybersecuritybestpracticesfordeployingmachinelearningandAIingeneral:
•NationalCyberSecurityCentre(UK)-Principlesforthesecurityofmachine
learning
.uk/collection/machine-learning
•NationalCyberSecurityCentre(UK)–GuidelinesforsecureAIsystem
development
.uk/collection/guidelines-secure-ai-system-development
•JointCybersecurityInformation-DeployingAISystemsSecurely
/2024/Apr/15/2003439257/-1/-1/0/CSI-DEPLOYING-AI-
SYSTEMS-SECURELY.PDF
Copyright©SERJON,LLC2024.Allrightsreserved.
WRAP-UP
Copyright©SERJON,LLC2024.Allrightsreserved.
AIFUTURE
•Improvementsincustomerservice
•Improvementsinoperationalefficiency
•Developingbetterdesigns
•Assistingindevelopmentofnewmaterials
•Inspectingandevaluatinginfrastructure
•Improvingsafetythroughnewdriverassistancefeatures
•Increasefleetuptime
……ExplainableandtrustworthyAIwillbringmoreapplications
Copyright©SERJON,LLC2024.Allrightsreserved.
FURTHERREADING
IfyouarenewtoAI/ML,Icanhighlyrecommendthefollowingbookasagoodstartingpoint
•Ozdemir,S.,Kakade,S.,&Tibaldeschi,M.(2018).PrincipalsofDataScience(2nded.).PacktPublishing.
/product/principles-of-data
-science-second-edition/9781789804546
Ifyouarelookingforamorein-depthfoundationalbook,Iwouldrecommendthefollowingbook:
•Kelleher,J.D.,MacNamee,B.,&D’Arcy,A.(2015).FundamentalsofMachineLearningforPredictiveDataAnalytics.TheMITPress.
Copyright©SERJON,LLC2024.Allrightsreserved.
FURTHERREADING
Forthosewhowanttogettotheheartofthemathandbuildyourownmodels,includingdeepregressionlearning,Iwouldrecommendthefollowingbook:
•Goodfellow,I.,Bengio,Y.,&Courville,A.(2017).DeepLearning.TheMITPress.Iwouldalsorecommendthefollowingpaperformoreinformationaboutsafety-criticalAIapplicationsintransportationtohelptietogethertheuseofAIintransportation:
•JonPerez-Cerrolaza,JaumeAbella,MarkusBorg,CarloDonzella,Jesús
Cerquides,FranciscoJ.Cazorla,CristoferEnglund,MarkusTauber,George
Nikolakopoulos,andJoseLuisFlores.2024.ArtificialIntelligenceforSafety-CriticalSystemsin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024股权合作经营合同版
- 2025年度智能门禁系统升级改造合同3篇
- 2024年某农业公司与农产品加工企业就农产品采购的合同
- 2025年度智能信息化车间生产承包合同范本3篇
- 2025年度新型草坪材料采购合同3篇
- 2024年版短期汽车租赁协议范本版B版
- 2024幼儿园教师劳务合同及教学成果评估范本2篇
- 2025年度文化产业财产抵押担保投资合同3篇
- 2024年钢构建筑油漆工程专业承包合同
- 2024年高速公路养护司机劳务雇佣合同范本3篇
- 输变电工程安全文明施工设施标准化配置表
- 一销基氯苯生产车间硝化工段工艺初步设计
- 自动控制原理仿真实验课程智慧树知到课后章节答案2023年下山东大学
- 【城市轨道交通运营安全管理研究9200字(论文)】
- 丁往道英语写作手册范本课件
- 教学能力大赛获奖之教学实施报告
- 小学数学专题讲座(课堂PPT)
- 三晶8000B系列变频器说明书
- 左传简介完整
- 体育中国(上海大学)超星尔雅学习通网课章节测试答案
- 幽默动感年会互动PPT演示模板
评论
0/150
提交评论