




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DEMYSTIFYINGARTIFICIALINTELLIGENCEINTRANSPORTATIONCYBERSECURITY
URBANJONSON,SVPITANDCYBERSECURITYSERVICES,SERJON
Copyright©SERJON,LLC2024.Allrightsreserved.
URBANJONSON
ujonson@
Current
SVPInformationTechnologyandCybersecurityServices,SERJON,LLC
USFBIInfraGardTransportationSubjectMatterExpert
FBIAutomotiveSectorSpecificWorkingGroup(SSWG)
BoardofDirectors,CyberTruckChallenge
ProgramCommittee,ESCARUSA
SAEVehicleElectricalSystemSecurityCommitteeMember
Technology&MaintenanceCouncil(TMC)S.5andS.12StudyGroupMember
Experience
Over35yearsofexperienceinITandCybersecurity,includingstrategicplanning,assessments,projectmanagement,andprogrammanagement
Variouspapers,talks,andresearchonhacking,aswellasdefendingtrucksandtransportationingeneral
Abusinganddefendingsystemssincethe1980s
Copyright©SERJON,LLC2024.Allrightsreserved.
AGENDA
•AIOverview
•AITaxonomy
•ChallengeswithAI
•CommonAImistakes
•TransportationApplications
•AttackingAI
•DefendingAI
•Wrap-up
ImagegeneratedbyBingImageCreator
Copyright©SERJON,LLC2024.Allrightsreserved.
AIOVERVIEW
Copyright©SERJON,LLC2024.Allrightsreserved.
HISTORICALOVERVIEW
•1950s–BirthofAI
•AlanTuringandotherslaidthegroundworkformachineintelligence
•1960s–EarlyApplications
•Problem-solvingandsymbolicreasoning,e.g.playingchess
•1980s–ExpertSystems
•Programsdesignedtomimichumanexpertise,e.g.taxsoftware
•1990s–MachineLearningResurgence
•NeuralnetworksandnewalgorithmsrevitalizeinterestinAI
Copyright©SERJON,LLC2024.Allrightsreserved.
HISTORICALOVERVIEW
•2000s–RiseofBigData
•Availabilityoflargedatasetsandimprovedcomputingpower
•2010s–DeepLearningDominance
•Multi-layeredneuralnetworkscapableofimagerecognition,speechrecognition
•2020s–GenerativeAI
•NewLargeLanguageModels(LLM)builtonmassivedatacloudplatformscapableofgeneratingimages,code,andother
content(ChatGPT,BingImageCreator,etc.)basedoninputprompts
Copyright©SERJON,LLC2024.Allrightsreserved.
TECHNICALOVERVIEW
UNDERSTANDABLEVSPREDICTIVEPOWER
Image:NationalCyberSecurityCentre(UK)-Principlesforthesecurityofmachinelearning
[.uk/collection/machine-learning]
Copyright©SERJON,LLC2024.Allrightsreserved.
MACHINELEARNINGAPPLICATIONS
Commonmachine
learninganalytic
applications
Image:
/science/article/pii/S0951832021003835
Copyright©SERJON,LLC2024.Allrightsreserved.
ARTIFICIALNEURALNETS
Thecorecomponent
ofneuralnetsisthe
artificialneuron
Conceptuallycanbethoughtofasamini
linearregressionmodel
Image:
/blog/artificial-neural-networks-basics-guide/
Copyright©SERJON,LLC2024.Allrightsreserved.
TRAININGMETHODS
Image:
/science/article/pii/S0951832021003835
Copyright©SERJON,LLC2024.Allrightsreserved.
MODELTRAINING
Simplesupervisedlearning
Imagesareconvertedintonumericaldatausuallybyflatteningintoavector
Image:
/@MITIBMLab/estimating-information-flow-in-deep-neural-networks-b2a77bdda7a7
Copyright©SERJON,LLC2024.Allrightsreserved.
AITAXONOMY
Copyright©SERJON,LLC2024.Allrightsreserved.
OVERVIEW
NISTAIUseTaxonomy*:
•Decomposescomplexhuman-AItasksintoactivitiesthatareindependentoftechnologicaltechniques(e.g.,neural
network,largelanguagemodel,reinforcementlearning)anddomains(e.g.,finance,medicine,law).
•ProvidesaflexiblemeansofclassifyinganAIsystem’scontributiontoaspecifiedhuman-AItask.
•Intendedtobealivingdocumentthatisupdatedperiodicallywithfeedbackfromstakeholders,suchasthoseintheAI
evaluationandhumanfactorscommunities.
*NISTTrustworthyandResponsibleAINISTAI200-1,AIUseTaxonomy:AHuman-CenteredApproach,byTheofanos,Choong,andJenson,March2024,
/10.6028/NIST.AI.200-1
.
Copyright©SERJON,LLC2024.Allrightsreserved.
AITAXONOMY-TRANSPORTATION
•Connectionist–Learningalgorithmsbasedonneuralnetworks
•Bayesians–Probability-basedinferencesystems
•Symbolists–Logic-basedalgorithmssuchasrules-based
programming,decisiontrees,fuzzylogic,andrationalagents
•Analogizers–Similarity-basedclassifiers,suchassupportvectormachines
•Optimizations–Algorithmsperformingiterativeupdatesand
comparisonstodiscoveroptimumsolutions,e.g.GeneticAlgorithm(GA)
JonPerez-Cerrolaza,JaumeAbella,MarkusBorg,CarloDonzella,JesúsCerquides,FranciscoJ.Cazorla,CristoferEnglund,MarkusTauber,GeorgeNikolakopoulos,andJoseLuisFlores.
2024.ArtificialIntelligenceforSafety-CriticalSystemsinIndustrialandTransportationDomains:ASurvey.ACMComput.Surv.56,7,Article176(July2024),40pages.
/10.1145/3626314
Copyright©SERJON,LLC2024.Allrightsreserved.
CHALLENGESWITHAI
Copyright©SERJON,LLC2024.Allrightsreserved.
NON-DETERMINISTIC
•Thesameinputswillnotalwaysgeneratethesameoutputs
•Randomdataselectionbasedonprobabilitycurves
•Anytimeyouaddrandomdataselectioninconnectionistmodels,youruntheriskofnon-deterministicoutcomes
•Ifyourmodelcontinuestolearn,forexamplelinearregression,theoutputswillvaryovertimeasmodellearns
•Expertsystemsgenerallydonotsufferfromthisproblem,butanything
thathasaneuralnetworkwillruntherisk
Copyright©SERJON,LLC2024.Allrightsreserved.
INSCRUTABLE
•ThemathandcodeforAIiscompletelyunderstandable…..and“human-ish”readable
•Thedatathatyouusetotrainthemodelis
understandable(hopefully,ifyouhavedoneyourjobright)
•Theproblemiswhenyouusethecodetogenerateamodelbasedonthedata
•Duetohowthemodellearns(developingacomplexwebofprobabilisticweights)andisexpressed,itisnot
possibletolookatthemodelandunderstandhowitworks
Copyright©SERJON,LLC2024.Allrightsreserved.
UNEXPLAINABLE
•Sincethemodelisnon-deterministicandinscrutable,itisnoteasilyunderstood
•Makesexplaining“why”amodelproducedtheexactoutputexceedinglydifficultfor
neuralnetworks
•ExplainableandTrustworthyAIisanareaofintenseresearch
•TrustworthyAIcangenerateatrusted
explanationthathumanscanunderstand
Copyright©SERJON,LLC2024.Allrightsreserved.
WHYTHEPROBLEM?
•Layeredneuralnetworks
•Randomlygeneratedvalues
•Probabilisticevaluations
•Deeplearningisstatisticswithlinearalgebra
Image:
/tutorial/introduction-to-deep-neural-networks
Copyright©SERJON,LLC2024.Allrightsreserved.
DATAPROBLEM
•Ourmodelsareonlyasgoodasourdata
•Transportationdatasetsareintheirinfancy
•Wearestillinthegreat“dataownership”battle
•Ourvehicleplatformslackthesensorstocollectthenecessaryinformation(possible
exception…Tesla)
•Modelsareverylimitedinwhattheycando
Copyright©SERJON,LLC2024.Allrightsreserved.
TRANSPORTATIONDATASAMPLES
•Lackofinstrumentation
•Teslaprobablyhasbestdataset
•VehicleISasensorplatform
•Designedtocollectalldata
•Driversprovidingexperience
•Robottaxifleetdata2ndplace
•Cruise
•Waymo
•ProprietaryDataSources
•OEMdata
•Telematicsdata
•Vehicle/Fleetoperatordata
•OpenData
•PIVOT(
/
)
•EUDataAct
•ColoradoStateUniversity
Copyright©SERJON,LLC2024.Allrightsreserved.
TRAININGDATAPROBLEM
•DeeplearningandLLMsrequiremassivedatasetsforlearningandvalidation
•LLMs,suchasChatGPT,haveusedagreatdealofinternetcontent
•Manyimages,text,books,etc.usedinlearningmodelsarecopyrightedmaterials
•IsgeneratinganAImodelbasedonsomeoneelse’swork
a“fairuse”ofcopyrights?
•WhatiftheresultingAIismonetized?
•Howdoyouremoveonepartorsegmentoftrainingdataonceamodelhasbeencreated?
Copyright©SERJON,LLC2024.Allrightsreserved.
EDGECASES
•Edgecasesarestatisticaloutliereventsthatarenotpartofthetrainingdata
•Thoughtheymayberare,theycan
resultinunexpectedandundesirableoutcomes
•Edgecasesarewheretragedylives
Copyright©SERJON,LLC2024.Allrightsreserved.
Source:Projectguru.in
UBER
•UberAutonomousCrashMarch2018
•Pedestrianwalkingbicycleacrosstheroad
•Vehicleidentifiesandtrackspedestrian
•Vehicledoesnotbreak
•Safetydriverwasdistractedanddidnotact
•Factoryauto-breakingsystemdisabledsoasnottointerferewith
automateddrivingsoftware
•Exampleoflimitationsofdataandwhathappenswhennotfollowingfunctionalsafetybestpractices
Copyright©SERJON,LLC2024.Allrightsreserved.
CRUISE
•CruiseaccidentOctober2023
•Pedestriancrossesroadagainstdonotwalksignal
•Pedestriangetshalfwayacrossbeforecrosstrafficforcespedestriantowalkback
•Pedestrianhitbyacarandthrownintothepathofcruisevehicle
Copyright©SERJON,LLC2024.Allrightsreserved.
CRUISE
•Cruisevehicleisacceleratingeventhoughit“sees”pedestrian
•Vehicledoesnotrecognizescenario(edgecase)
•PedestriangetstrappedundertheCruisevehicle
•Vehiclesystemrecognizessomethingiswrong
•Insteadofstopping,thevehicledrivesforwardandpullsover,draggingthepedestrianunderthecar
•Whynotstop?
•Exampleoflimitationsofdataandwhathappenswhennotfollowingfunctionalsafetybestpractices
Copyright©SERJON,LLC2024.Allrightsreserved.
COMMONAIMISTAKES
Copyright©SERJON,LLC2024.Allrightsreserved.
LACKOFUNDERSTANDINGMODELS
•Mathishard,andlibrariesareeasy
•ThereareTONSofdifferentAImodelsandapproaches
•
TensorFlowiseasyandrequiresalmostnothinking
•
•
AnacondaextendsaccesstoeveryonewhocanPythonAmodelorimplementationinsearchofaproblem
•
Sometimes,neuralnetworksarenotthebestsolution
•
OftenseeproblemssolvedwithMLthatshouldbesolvedbyexpertsystems
•
Lackofunderstandingoflimitations
•
DisconnectbetweenAIandfunctionalsafety
Copyright©SERJON,LLC2024.Allrightsreserved.
DATASCIENCEDISCIPLINE
•Traditionalprogrammingisbasedonrequirements
•AIisbasedonDATA,whichmakesdatasciencecritical
•“Garbagein,garbageout”x1000
•Acommonerroristhatdatasciencelifecyclenotfollowed
•Smalldatasetsforlearningandvalidationareproblematic
•Lackofproperlysizeddatasetsleadto:
•Overfitmodelschasingaccuracy
•Falseminimaandmaximaforoptimizationproblems
•Higherprobabilityeventsarenotincludedinthemodel
•Significantmisclassificationscomparedtoreal-worlddata
Copyright©SERJON,LLC2024.Allrightsreserved.
Experimentationandprediction
DATASCIENCELIFECYCLE
preparation
Data
Explorationandvisualization
•Datacollectionandstorage
•Defineprojectobjectives
•Collectdata
•Normalizestorageandformat
•Explorationandvisualization
•Statisticaldataanalysis
•Datalabeling
•Datapreparation
•Missingorinconsistentdata
•Cleaningandaugmentingdata
•Removingduplicates
•Normalization
•Datalabeling
•Datatypeconversation
•Graphsandchartsforunderstanding
•Experimentationandprediction
•Trydifferentmodelsandapproaches
•Identifydatatrendsandpatterns
•Discoverinsights
•Buildmodel
Data
collection/storage
Source:
/blog/what-is-data-science-the-definitive-guide
Copyright©SERJON,LLC2024.Allrightsreserved.
TRANSPORTATIONAPPLICATIONS
Copyright©SERJON,LLC2024.Allrightsreserved.
ASSISTINGDRIVERS
•Safety-related“assistant”applicationstoreduceimpairedordistracteddriving
•Lane-keepingassist
•Intelligentcruisecontrol
•Automaticemergencybraking
•Limitcellphoneusewhiledriving(cellphone“drivingmode”)
•Limitcellphonedistractionsviapredictivebehaviororvehicleintegration
•Bettermusicplaylistprediction
•Bettermapsanddirections
•Recognizeimpaireddriving
•Inallthesescenarios,thedriverisstillthemaincontrollingactor
Copyright©SERJON,LLC2024.Allrightsreserved.
ANOMALY/ERRORDETECTION
•Vehiclepredictivemaintenance
•Batterylife
•Tirewear
•Many,manymore…..
•MotorfreightcarriersandTSPs
•Analyzebatteryvoltages
•Exhaustsensors
•Noiseandvibrationsensors
•CANbusmessages
•IntermittentDTCs
Copyright©SERJON,LLC2024.Allrightsreserved.
ANOMALY/ERRORDETECTION
•Vehiclecybersecurity[atscale]
•VSOC
•Faultpatterns
•Geolocationtrends
•IndividualvehicleIDSstillproblematic
•Lackoftrainingandvalidationdata
•Rule-basedexpertsystemsareprobablymoreeffective
•CompanionroleforML(seefunctionalsafety“safetybag”examples)
Copyright©SERJON,LLC2024.Allrightsreserved.
GENERALTRANSPORTATION
•TherearemanyapplicationsofAIinTransportationManagementSystems(TMS)andTrafficManagementSystems(TMS)
•Freightmovementoptimization
•Fuelconservation
•Mostefficientroutecalculations
•Trafficmanagement
•Parkingefficiencyandoptimization
Copyright©SERJON,LLC2024.Allrightsreserved.
FUNCTIONAL-SAFETY
•Functionalsafetyiswell-knownpracticewithspecificrulesandknownapproachestoachievingsafety
•Mitigationtechniquestodealwithuncertainty
•Safetybag(thinkinput/outputparametervalidation)
•Safetymonitors
•Diagnostics
•Formalmethods
•Functionalsafetysystemslikecrashavoidanceandlanedepartureassistthatcontainclassifiermodelsarenotprimarysafetysystems
•Driverremainstheprimarysafetysystemincontrolofthevehicle
Copyright©SERJON,LLC2024.Allrightsreserved.
FUNCTIONAL-SAFETY
•Neuralnetwork-basedAIisapoorchoiceforfunctionalsafetysystems
•Testingmassivelycomplexnon-deterministicsystemsisalmostimpossible
•Caveat:FormalmethodscombinedwithML
•Impossibletoexplainwhyamodelbehavesinacertainway
•Introducessafetyrisksandmassivelegalliabilities
Copyright©SERJON,LLC2024.Allrightsreserved.
AUTONOMOUSVEHICLES
•ExistingMLmodelsareunsuitableforSAELevel3–5automation
•Wedonothavethedatatousethemeffectively
•CurrentMLmodelsarenotexplainableortrustworthy
•MoreadvancedMLmodelsarenon-deterministic
•MLissuitableforclassifiersandpreceptorsbutnotatthe
accuracyrequiredforfunctionalsafety
•Closedandcontrolledenvironmentsarepossible
•Real-worldpublicroadsandadversarialenvironmentsaretoocomplexwheresafetystandardscannotbemet
Image:createdbymonkik
Copyright©SERJON,LLC2024.Allrightsreserved.
ATTACKINGAI
Copyright©SERJON,LLC2024.Allrightsreserved.
ATTACKINGAI
•Traditionaltechniquesarestillapplicable
•Denialofserviceattacks
•Softwarestackvulnerabilitiesandexploits
•Hostingandruntimeenvironmentexploitation
•Socialengineering
•TherearenewattackmethodstargetingAI
•MITREAdversarialThreatLandscapeforAI
•OWASPTop10MachineLearningRisks
Copyright©SERJON,LLC2024.Allrightsreserved.
Systems(ATLAS™)
CLASSIFICATIONINPUTMANIPULATION
•Modificationofaninput(e.g.image,sensorvalue)tocause:
•Misclassification
•Triggererrorconditions
•Alterintendedbehavior(inference-basedsystems)
•Acommonexampleisstopsign“modification”:
•Addingtapetocausemisclassification
•Shiningbrightlightsalteringgradientanalysis
•Alargenumberofacademicpapersonhowtomessuptrafficsignalinputs
•FewMLmodelsareimmune
•Distinctfrompromptmanipulation(coveredlater)
Copyright©SERJON,LLC2024.Allrightsreserved.
EXPLOITEDGECASES
•Limitationsofavailabledataallowedgecaseexploitation
•Analyzethemodelanddeterminelow-probabilityinputs
•UseanAItofuzzanotherAImodeltodeterminelimitations
•Causethemodeltobehaveincorrectlyorevencrash
•Especiallyeffectiveifinputandoutputvaluesarenotvalidatedandboundschecked
•Maycausesystemfailureorsoftwarestackmalfunction
•Errorconditionscancauseremotecodeexecutionordataexfiltrationopportunities
Copyright©SERJON,LLC2024.Allrightsreserved.
PROMPTINJECTION/MANIPULATION
•ApplicabletoLLMmodelswhichgenerateoutputbasedonprompts
•OnewaytothinkofthisisasSQLInjectionattacks,butinsteadoftargetingaSQLDB,theunderlyingmodelistargeted
•Injection/promptattackscancause:
•Datadisclosure
•Modelcorruption
•Hostingsystemcorruption
•Bypasssafetyorcontentrestrictions
•Wecanalsousesocialengineeringtrickstogetthemodeltodothingsitisnotsupposedtodo(hardastrickinga4yrold)
Copyright©SERJON,LLC2024.Allrightsreserved.
TRAININGDATAPOISONING
•AImodelsarebuiltfromthetrainingdata
•Duetolackoftrainingdata,manytrainingsetsarebasedonpublicdatasources
•Poisoningapublicdatasetcanintroduce
•Backdoors
•Remotecodeexecutionerrors
•Anynumberofmalwarescenarios
•Feedingmaliciousdataintoacontinuouslearningmodelcancausemodeldriftandeventualmodelfailure
•ContinuouslylearningIDSsystems
•Self-optimizingmodels
Copyright©SERJON,LLC2024.Allrightsreserved.
HACKING
EXAMPLE
Copyright©SERJON,LLC2024.Allrightsreserved.
HACKINGADASMODEL
•BlackhatAsia2024-TheKeytoRemoteVehicleControl:AutonomousDrivingDomainController
•ShupengGao,SeniorSecurityResearcher,Baidu
•YingtaoZeng,SeniorSecurityResearcher,Baidu
•JieGao,SeniorSecurityResearcher,Baidu
•YimiHu,SeniorSecurityResearcher,Baidu
•Analyzedover30ADASdevices
•50%hadSHHenabled
•Somedeployedwithoriginalmodelfiles(*.onnx)
•Littleornodiskencryption
/asia-24/briefings/schedule/index.html#the-key-to-remote-vehicle-control-autonomous-driving-domain-contr
oller-38089
Copyright©SERJON,LLC2024.Allrightsreserved.
HACKINGADASMODEL
•ADASunitcanbeapathwaytototalvehiclecompromiseasitneedstobeaccessibleonCANnetworkandupdateable
•Researchers:
•Abletooffloadentiremodelfiles,includingoriginalmodelfiles
•Abletoreadthemodelanddeployina$50toycar
•Possibletoupdatemodelonoriginaldevice
•PoorlysecuredADASmodulecanleadtototalvehiclecontrol
•Steering
•Braking
•Powertrain
Copyright©SERJON,LLC2024.Allrightsreserved.
DEFENDINGAI
Copyright©SERJON,LLC2024.Allrightsreserved.
AI-WHATISTHESAME?
Themorethingschange,themoretheyremainthesame:
•Softwarestackvulnerabilities
•Operatingsystemvulnerabilities
•Softwaresupplychainattacks
•Hardwarefirmware
•PlatformOS
•Browservulnerabilities
•ITandDevSecOpsbestpracticesstillapply
•Sanitizeandvalidateinputsandoutputs
Copyright©SERJON,LLC2024.Allrightsreserved.
AI-WHAT’SDIFFERENT?
•Systemsarebuiltgroundupfromdata,notrequirements
•Awholenewmindsetforadversarialattackvectors
•Increasedsupplychaincomplexity
•Inputvalidationbecomesharderandmoreimportant
•Datahandlingproceduresaremoreimportant
•Erroneous,mislabeled,orincompletedatacanhavebigimpact
•DevSecOpsneedstoincorporatedataandmachinelearningmodels
•Datascientistsneedtounderstandcybersecurity
Copyright©SERJON,LLC2024.Allrightsreserved.
AI–DEFENSIVEBESTPRACTICES
Whilenotanexhaustivelist,herearesomebestpractices:
•ProtectsystemboundariesbetweenITandAI
•Identifyandprotectallproprietarydata
•StrongaccessandauthorizationcontrolsforfinalAImodelweights
•Hardenthedeploymentenvironment
•Applyversionlabelstomodels(changestoweights)
•Validateallinputsforedgecasesandattacks
•Validatealloutputstoensureoperationinsideboundaries(safetybag)
Copyright©SERJON,LLC2024.Allrightsreserved.
DEFENSIVERESOURCES
ThereareseveralrecentgoodpublicationsoncybersecuritybestpracticesfordeployingmachinelearningandAIingeneral:
•NationalCyberSecurityCentre(UK)-Principlesforthesecurityofmachine
learning
.uk/collection/machine-learning
•NationalCyberSecurityCentre(UK)–GuidelinesforsecureAIsystem
development
.uk/collection/guidelines-secure-ai-system-development
•JointCybersecurityInformation-DeployingAISystemsSecurely
/2024/Apr/15/2003439257/-1/-1/0/CSI-DEPLOYING-AI-
SYSTEMS-SECURELY.PDF
Copyright©SERJON,LLC2024.Allrightsreserved.
WRAP-UP
Copyright©SERJON,LLC2024.Allrightsreserved.
AIFUTURE
•Improvementsincustomerservice
•Improvementsinoperationalefficiency
•Developingbetterdesigns
•Assistingindevelopmentofnewmaterials
•Inspectingandevaluatinginfrastructure
•Improvingsafetythroughnewdriverassistancefeatures
•Increasefleetuptime
……ExplainableandtrustworthyAIwillbringmoreapplications
Copyright©SERJON,LLC2024.Allrightsreserved.
FURTHERREADING
IfyouarenewtoAI/ML,Icanhighlyrecommendthefollowingbookasagoodstartingpoint
•Ozdemir,S.,Kakade,S.,&Tibaldeschi,M.(2018).PrincipalsofDataScience(2nded.).PacktPublishing.
/product/principles-of-data
-science-second-edition/9781789804546
Ifyouarelookingforamorein-depthfoundationalbook,Iwouldrecommendthefollowingbook:
•Kelleher,J.D.,MacNamee,B.,&D’Arcy,A.(2015).FundamentalsofMachineLearningforPredictiveDataAnalytics.TheMITPress.
Copyright©SERJON,LLC2024.Allrightsreserved.
FURTHERREADING
Forthosewhowanttogettotheheartofthemathandbuildyourownmodels,includingdeepregressionlearning,Iwouldrecommendthefollowingbook:
•Goodfellow,I.,Bengio,Y.,&Courville,A.(2017).DeepLearning.TheMITPress.Iwouldalsorecommendthefollowingpaperformoreinformationaboutsafety-criticalAIapplicationsintransportationtohelptietogethertheuseofAIintransportation:
•JonPerez-Cerrolaza,JaumeAbella,MarkusBorg,CarloDonzella,Jesús
Cerquides,FranciscoJ.Cazorla,CristoferEnglund,MarkusTauber,George
Nikolakopoulos,andJoseLuisFlores.2024.ArtificialIntelligenceforSafety-CriticalSystemsin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公路养护施工合同范本
- 2025电力工程合同造价控制的管理
- 2025债权债务转让合同模板
- 废旧油毡出售合同范本
- 交易店铺转让合同范本
- 瑜伽劳动合同范本
- 广西柳州市鱼峰区二十五中学2024-2025学年下学期四调考试初三年级化学试题试卷含解析
- 2025届江苏省南京市南京一中高三第二学期5月份月考生物试题含解析
- 衡阳市石鼓区2024-2025学年重点中学小升初数学入学考试卷含解析
- 2025年黑龙江省齐齐哈尔市克东县达标名校中考抽测英语试题样题(A卷)试卷含答案
- Q-SY 05601-2019 油气管道投产前检查规范
- 《金属非金属地下矿山通信联络系统建设规范》
- 浅析船体分段焊接检验
- 医保基金监管培训课件
- 2024高考复习必背英语词汇3500单词
- 3课 《赤壁赋》公开课一等奖创新教学设计【中职专用】高一语文高教版2023-2024-基础模块下册
- 第5章 层次分析法课件
- 情感纠纷案件调解协议书
- 咯血护理疑难病例讨论
- 《车间主任培训》课件
- 感染性休克急救流程及应急预案
评论
0/150
提交评论