揭开人工智能在交通网络安全中的神秘面纱(英文)_第1页
揭开人工智能在交通网络安全中的神秘面纱(英文)_第2页
揭开人工智能在交通网络安全中的神秘面纱(英文)_第3页
揭开人工智能在交通网络安全中的神秘面纱(英文)_第4页
揭开人工智能在交通网络安全中的神秘面纱(英文)_第5页
已阅读5页,还剩123页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DEMYSTIFYINGARTIFICIALINTELLIGENCEINTRANSPORTATIONCYBERSECURITY

URBANJONSON,SVPITANDCYBERSECURITYSERVICES,SERJON

Copyright©SERJON,LLC2024.Allrightsreserved.

URBANJONSON

ujonson@

Current

SVPInformationTechnologyandCybersecurityServices,SERJON,LLC

USFBIInfraGardTransportationSubjectMatterExpert

FBIAutomotiveSectorSpecificWorkingGroup(SSWG)

BoardofDirectors,CyberTruckChallenge

ProgramCommittee,ESCARUSA

SAEVehicleElectricalSystemSecurityCommitteeMember

Technology&MaintenanceCouncil(TMC)S.5andS.12StudyGroupMember

Experience

Over35yearsofexperienceinITandCybersecurity,includingstrategicplanning,assessments,projectmanagement,andprogrammanagement

Variouspapers,talks,andresearchonhacking,aswellasdefendingtrucksandtransportationingeneral

Abusinganddefendingsystemssincethe1980s

Copyright©SERJON,LLC2024.Allrightsreserved.

AGENDA

•AIOverview

•AITaxonomy

•ChallengeswithAI

•CommonAImistakes

•TransportationApplications

•AttackingAI

•DefendingAI

•Wrap-up

ImagegeneratedbyBingImageCreator

Copyright©SERJON,LLC2024.Allrightsreserved.

AIOVERVIEW

Copyright©SERJON,LLC2024.Allrightsreserved.

HISTORICALOVERVIEW

•1950s–BirthofAI

•AlanTuringandotherslaidthegroundworkformachineintelligence

•1960s–EarlyApplications

•Problem-solvingandsymbolicreasoning,e.g.playingchess

•1980s–ExpertSystems

•Programsdesignedtomimichumanexpertise,e.g.taxsoftware

•1990s–MachineLearningResurgence

•NeuralnetworksandnewalgorithmsrevitalizeinterestinAI

Copyright©SERJON,LLC2024.Allrightsreserved.

HISTORICALOVERVIEW

•2000s–RiseofBigData

•Availabilityoflargedatasetsandimprovedcomputingpower

•2010s–DeepLearningDominance

•Multi-layeredneuralnetworkscapableofimagerecognition,speechrecognition

•2020s–GenerativeAI

•NewLargeLanguageModels(LLM)builtonmassivedatacloudplatformscapableofgeneratingimages,code,andother

content(ChatGPT,BingImageCreator,etc.)basedoninputprompts

Copyright©SERJON,LLC2024.Allrightsreserved.

TECHNICALOVERVIEW

UNDERSTANDABLEVSPREDICTIVEPOWER

Image:NationalCyberSecurityCentre(UK)-Principlesforthesecurityofmachinelearning

[.uk/collection/machine-learning]

Copyright©SERJON,LLC2024.Allrightsreserved.

MACHINELEARNINGAPPLICATIONS

Commonmachine

learninganalytic

applications

Image:

/science/article/pii/S0951832021003835

Copyright©SERJON,LLC2024.Allrightsreserved.

ARTIFICIALNEURALNETS

Thecorecomponent

ofneuralnetsisthe

artificialneuron

Conceptuallycanbethoughtofasamini

linearregressionmodel

Image:

/blog/artificial-neural-networks-basics-guide/

Copyright©SERJON,LLC2024.Allrightsreserved.

TRAININGMETHODS

Image:

/science/article/pii/S0951832021003835

Copyright©SERJON,LLC2024.Allrightsreserved.

MODELTRAINING

Simplesupervisedlearning

Imagesareconvertedintonumericaldatausuallybyflatteningintoavector

Image:

/@MITIBMLab/estimating-information-flow-in-deep-neural-networks-b2a77bdda7a7

Copyright©SERJON,LLC2024.Allrightsreserved.

AITAXONOMY

Copyright©SERJON,LLC2024.Allrightsreserved.

OVERVIEW

NISTAIUseTaxonomy*:

•Decomposescomplexhuman-AItasksintoactivitiesthatareindependentoftechnologicaltechniques(e.g.,neural

network,largelanguagemodel,reinforcementlearning)anddomains(e.g.,finance,medicine,law).

•ProvidesaflexiblemeansofclassifyinganAIsystem’scontributiontoaspecifiedhuman-AItask.

•Intendedtobealivingdocumentthatisupdatedperiodicallywithfeedbackfromstakeholders,suchasthoseintheAI

evaluationandhumanfactorscommunities.

*NISTTrustworthyandResponsibleAINISTAI200-1,AIUseTaxonomy:AHuman-CenteredApproach,byTheofanos,Choong,andJenson,March2024,

/10.6028/NIST.AI.200-1

.

Copyright©SERJON,LLC2024.Allrightsreserved.

AITAXONOMY-TRANSPORTATION

•Connectionist–Learningalgorithmsbasedonneuralnetworks

•Bayesians–Probability-basedinferencesystems

•Symbolists–Logic-basedalgorithmssuchasrules-based

programming,decisiontrees,fuzzylogic,andrationalagents

•Analogizers–Similarity-basedclassifiers,suchassupportvectormachines

•Optimizations–Algorithmsperformingiterativeupdatesand

comparisonstodiscoveroptimumsolutions,e.g.GeneticAlgorithm(GA)

JonPerez-Cerrolaza,JaumeAbella,MarkusBorg,CarloDonzella,JesúsCerquides,FranciscoJ.Cazorla,CristoferEnglund,MarkusTauber,GeorgeNikolakopoulos,andJoseLuisFlores.

2024.ArtificialIntelligenceforSafety-CriticalSystemsinIndustrialandTransportationDomains:ASurvey.ACMComput.Surv.56,7,Article176(July2024),40pages.

/10.1145/3626314

Copyright©SERJON,LLC2024.Allrightsreserved.

CHALLENGESWITHAI

Copyright©SERJON,LLC2024.Allrightsreserved.

NON-DETERMINISTIC

•Thesameinputswillnotalwaysgeneratethesameoutputs

•Randomdataselectionbasedonprobabilitycurves

•Anytimeyouaddrandomdataselectioninconnectionistmodels,youruntheriskofnon-deterministicoutcomes

•Ifyourmodelcontinuestolearn,forexamplelinearregression,theoutputswillvaryovertimeasmodellearns

•Expertsystemsgenerallydonotsufferfromthisproblem,butanything

thathasaneuralnetworkwillruntherisk

Copyright©SERJON,LLC2024.Allrightsreserved.

INSCRUTABLE

•ThemathandcodeforAIiscompletelyunderstandable…..and“human-ish”readable

•Thedatathatyouusetotrainthemodelis

understandable(hopefully,ifyouhavedoneyourjobright)

•Theproblemiswhenyouusethecodetogenerateamodelbasedonthedata

•Duetohowthemodellearns(developingacomplexwebofprobabilisticweights)andisexpressed,itisnot

possibletolookatthemodelandunderstandhowitworks

Copyright©SERJON,LLC2024.Allrightsreserved.

UNEXPLAINABLE

•Sincethemodelisnon-deterministicandinscrutable,itisnoteasilyunderstood

•Makesexplaining“why”amodelproducedtheexactoutputexceedinglydifficultfor

neuralnetworks

•ExplainableandTrustworthyAIisanareaofintenseresearch

•TrustworthyAIcangenerateatrusted

explanationthathumanscanunderstand

Copyright©SERJON,LLC2024.Allrightsreserved.

WHYTHEPROBLEM?

•Layeredneuralnetworks

•Randomlygeneratedvalues

•Probabilisticevaluations

•Deeplearningisstatisticswithlinearalgebra

Image:

/tutorial/introduction-to-deep-neural-networks

Copyright©SERJON,LLC2024.Allrightsreserved.

DATAPROBLEM

•Ourmodelsareonlyasgoodasourdata

•Transportationdatasetsareintheirinfancy

•Wearestillinthegreat“dataownership”battle

•Ourvehicleplatformslackthesensorstocollectthenecessaryinformation(possible

exception…Tesla)

•Modelsareverylimitedinwhattheycando

Copyright©SERJON,LLC2024.Allrightsreserved.

TRANSPORTATIONDATASAMPLES

•Lackofinstrumentation

•Teslaprobablyhasbestdataset

•VehicleISasensorplatform

•Designedtocollectalldata

•Driversprovidingexperience

•Robottaxifleetdata2ndplace

•Cruise

•Waymo

•ProprietaryDataSources

•OEMdata

•Telematicsdata

•Vehicle/Fleetoperatordata

•OpenData

•PIVOT(

/

)

•EUDataAct

•ColoradoStateUniversity

Copyright©SERJON,LLC2024.Allrightsreserved.

TRAININGDATAPROBLEM

•DeeplearningandLLMsrequiremassivedatasetsforlearningandvalidation

•LLMs,suchasChatGPT,haveusedagreatdealofinternetcontent

•Manyimages,text,books,etc.usedinlearningmodelsarecopyrightedmaterials

•IsgeneratinganAImodelbasedonsomeoneelse’swork

a“fairuse”ofcopyrights?

•WhatiftheresultingAIismonetized?

•Howdoyouremoveonepartorsegmentoftrainingdataonceamodelhasbeencreated?

Copyright©SERJON,LLC2024.Allrightsreserved.

EDGECASES

•Edgecasesarestatisticaloutliereventsthatarenotpartofthetrainingdata

•Thoughtheymayberare,theycan

resultinunexpectedandundesirableoutcomes

•Edgecasesarewheretragedylives

Copyright©SERJON,LLC2024.Allrightsreserved.

Source:Projectguru.in

UBER

•UberAutonomousCrashMarch2018

•Pedestrianwalkingbicycleacrosstheroad

•Vehicleidentifiesandtrackspedestrian

•Vehicledoesnotbreak

•Safetydriverwasdistractedanddidnotact

•Factoryauto-breakingsystemdisabledsoasnottointerferewith

automateddrivingsoftware

•Exampleoflimitationsofdataandwhathappenswhennotfollowingfunctionalsafetybestpractices

Copyright©SERJON,LLC2024.Allrightsreserved.

CRUISE

•CruiseaccidentOctober2023

•Pedestriancrossesroadagainstdonotwalksignal

•Pedestriangetshalfwayacrossbeforecrosstrafficforcespedestriantowalkback

•Pedestrianhitbyacarandthrownintothepathofcruisevehicle

Copyright©SERJON,LLC2024.Allrightsreserved.

CRUISE

•Cruisevehicleisacceleratingeventhoughit“sees”pedestrian

•Vehicledoesnotrecognizescenario(edgecase)

•PedestriangetstrappedundertheCruisevehicle

•Vehiclesystemrecognizessomethingiswrong

•Insteadofstopping,thevehicledrivesforwardandpullsover,draggingthepedestrianunderthecar

•Whynotstop?

•Exampleoflimitationsofdataandwhathappenswhennotfollowingfunctionalsafetybestpractices

Copyright©SERJON,LLC2024.Allrightsreserved.

COMMONAIMISTAKES

Copyright©SERJON,LLC2024.Allrightsreserved.

LACKOFUNDERSTANDINGMODELS

•Mathishard,andlibrariesareeasy

•ThereareTONSofdifferentAImodelsandapproaches

TensorFlowiseasyandrequiresalmostnothinking

AnacondaextendsaccesstoeveryonewhocanPythonAmodelorimplementationinsearchofaproblem

Sometimes,neuralnetworksarenotthebestsolution

OftenseeproblemssolvedwithMLthatshouldbesolvedbyexpertsystems

Lackofunderstandingoflimitations

DisconnectbetweenAIandfunctionalsafety

Copyright©SERJON,LLC2024.Allrightsreserved.

DATASCIENCEDISCIPLINE

•Traditionalprogrammingisbasedonrequirements

•AIisbasedonDATA,whichmakesdatasciencecritical

•“Garbagein,garbageout”x1000

•Acommonerroristhatdatasciencelifecyclenotfollowed

•Smalldatasetsforlearningandvalidationareproblematic

•Lackofproperlysizeddatasetsleadto:

•Overfitmodelschasingaccuracy

•Falseminimaandmaximaforoptimizationproblems

•Higherprobabilityeventsarenotincludedinthemodel

•Significantmisclassificationscomparedtoreal-worlddata

Copyright©SERJON,LLC2024.Allrightsreserved.

Experimentationandprediction

DATASCIENCELIFECYCLE

preparation

Data

Explorationandvisualization

•Datacollectionandstorage

•Defineprojectobjectives

•Collectdata

•Normalizestorageandformat

•Explorationandvisualization

•Statisticaldataanalysis

•Datalabeling

•Datapreparation

•Missingorinconsistentdata

•Cleaningandaugmentingdata

•Removingduplicates

•Normalization

•Datalabeling

•Datatypeconversation

•Graphsandchartsforunderstanding

•Experimentationandprediction

•Trydifferentmodelsandapproaches

•Identifydatatrendsandpatterns

•Discoverinsights

•Buildmodel

Data

collection/storage

Source:

/blog/what-is-data-science-the-definitive-guide

Copyright©SERJON,LLC2024.Allrightsreserved.

TRANSPORTATIONAPPLICATIONS

Copyright©SERJON,LLC2024.Allrightsreserved.

ASSISTINGDRIVERS

•Safety-related“assistant”applicationstoreduceimpairedordistracteddriving

•Lane-keepingassist

•Intelligentcruisecontrol

•Automaticemergencybraking

•Limitcellphoneusewhiledriving(cellphone“drivingmode”)

•Limitcellphonedistractionsviapredictivebehaviororvehicleintegration

•Bettermusicplaylistprediction

•Bettermapsanddirections

•Recognizeimpaireddriving

•Inallthesescenarios,thedriverisstillthemaincontrollingactor

Copyright©SERJON,LLC2024.Allrightsreserved.

ANOMALY/ERRORDETECTION

•Vehiclepredictivemaintenance

•Batterylife

•Tirewear

•Many,manymore…..

•MotorfreightcarriersandTSPs

•Analyzebatteryvoltages

•Exhaustsensors

•Noiseandvibrationsensors

•CANbusmessages

•IntermittentDTCs

Copyright©SERJON,LLC2024.Allrightsreserved.

ANOMALY/ERRORDETECTION

•Vehiclecybersecurity[atscale]

•VSOC

•Faultpatterns

•Geolocationtrends

•IndividualvehicleIDSstillproblematic

•Lackoftrainingandvalidationdata

•Rule-basedexpertsystemsareprobablymoreeffective

•CompanionroleforML(seefunctionalsafety“safetybag”examples)

Copyright©SERJON,LLC2024.Allrightsreserved.

GENERALTRANSPORTATION

•TherearemanyapplicationsofAIinTransportationManagementSystems(TMS)andTrafficManagementSystems(TMS)

•Freightmovementoptimization

•Fuelconservation

•Mostefficientroutecalculations

•Trafficmanagement

•Parkingefficiencyandoptimization

Copyright©SERJON,LLC2024.Allrightsreserved.

FUNCTIONAL-SAFETY

•Functionalsafetyiswell-knownpracticewithspecificrulesandknownapproachestoachievingsafety

•Mitigationtechniquestodealwithuncertainty

•Safetybag(thinkinput/outputparametervalidation)

•Safetymonitors

•Diagnostics

•Formalmethods

•Functionalsafetysystemslikecrashavoidanceandlanedepartureassistthatcontainclassifiermodelsarenotprimarysafetysystems

•Driverremainstheprimarysafetysystemincontrolofthevehicle

Copyright©SERJON,LLC2024.Allrightsreserved.

FUNCTIONAL-SAFETY

•Neuralnetwork-basedAIisapoorchoiceforfunctionalsafetysystems

•Testingmassivelycomplexnon-deterministicsystemsisalmostimpossible

•Caveat:FormalmethodscombinedwithML

•Impossibletoexplainwhyamodelbehavesinacertainway

•Introducessafetyrisksandmassivelegalliabilities

Copyright©SERJON,LLC2024.Allrightsreserved.

AUTONOMOUSVEHICLES

•ExistingMLmodelsareunsuitableforSAELevel3–5automation

•Wedonothavethedatatousethemeffectively

•CurrentMLmodelsarenotexplainableortrustworthy

•MoreadvancedMLmodelsarenon-deterministic

•MLissuitableforclassifiersandpreceptorsbutnotatthe

accuracyrequiredforfunctionalsafety

•Closedandcontrolledenvironmentsarepossible

•Real-worldpublicroadsandadversarialenvironmentsaretoocomplexwheresafetystandardscannotbemet

Image:createdbymonkik

Copyright©SERJON,LLC2024.Allrightsreserved.

ATTACKINGAI

Copyright©SERJON,LLC2024.Allrightsreserved.

ATTACKINGAI

•Traditionaltechniquesarestillapplicable

•Denialofserviceattacks

•Softwarestackvulnerabilitiesandexploits

•Hostingandruntimeenvironmentexploitation

•Socialengineering

•TherearenewattackmethodstargetingAI

•MITREAdversarialThreatLandscapeforAI

•OWASPTop10MachineLearningRisks

Copyright©SERJON,LLC2024.Allrightsreserved.

Systems(ATLAS™)

CLASSIFICATIONINPUTMANIPULATION

•Modificationofaninput(e.g.image,sensorvalue)tocause:

•Misclassification

•Triggererrorconditions

•Alterintendedbehavior(inference-basedsystems)

•Acommonexampleisstopsign“modification”:

•Addingtapetocausemisclassification

•Shiningbrightlightsalteringgradientanalysis

•Alargenumberofacademicpapersonhowtomessuptrafficsignalinputs

•FewMLmodelsareimmune

•Distinctfrompromptmanipulation(coveredlater)

Copyright©SERJON,LLC2024.Allrightsreserved.

EXPLOITEDGECASES

•Limitationsofavailabledataallowedgecaseexploitation

•Analyzethemodelanddeterminelow-probabilityinputs

•UseanAItofuzzanotherAImodeltodeterminelimitations

•Causethemodeltobehaveincorrectlyorevencrash

•Especiallyeffectiveifinputandoutputvaluesarenotvalidatedandboundschecked

•Maycausesystemfailureorsoftwarestackmalfunction

•Errorconditionscancauseremotecodeexecutionordataexfiltrationopportunities

Copyright©SERJON,LLC2024.Allrightsreserved.

PROMPTINJECTION/MANIPULATION

•ApplicabletoLLMmodelswhichgenerateoutputbasedonprompts

•OnewaytothinkofthisisasSQLInjectionattacks,butinsteadoftargetingaSQLDB,theunderlyingmodelistargeted

•Injection/promptattackscancause:

•Datadisclosure

•Modelcorruption

•Hostingsystemcorruption

•Bypasssafetyorcontentrestrictions

•Wecanalsousesocialengineeringtrickstogetthemodeltodothingsitisnotsupposedtodo(hardastrickinga4yrold)

Copyright©SERJON,LLC2024.Allrightsreserved.

TRAININGDATAPOISONING

•AImodelsarebuiltfromthetrainingdata

•Duetolackoftrainingdata,manytrainingsetsarebasedonpublicdatasources

•Poisoningapublicdatasetcanintroduce

•Backdoors

•Remotecodeexecutionerrors

•Anynumberofmalwarescenarios

•Feedingmaliciousdataintoacontinuouslearningmodelcancausemodeldriftandeventualmodelfailure

•ContinuouslylearningIDSsystems

•Self-optimizingmodels

Copyright©SERJON,LLC2024.Allrightsreserved.

HACKING

EXAMPLE

Copyright©SERJON,LLC2024.Allrightsreserved.

HACKINGADASMODEL

•BlackhatAsia2024-TheKeytoRemoteVehicleControl:AutonomousDrivingDomainController

•ShupengGao,SeniorSecurityResearcher,Baidu

•YingtaoZeng,SeniorSecurityResearcher,Baidu

•JieGao,SeniorSecurityResearcher,Baidu

•YimiHu,SeniorSecurityResearcher,Baidu

•Analyzedover30ADASdevices

•50%hadSHHenabled

•Somedeployedwithoriginalmodelfiles(*.onnx)

•Littleornodiskencryption

/asia-24/briefings/schedule/index.html#the-key-to-remote-vehicle-control-autonomous-driving-domain-contr

oller-38089

Copyright©SERJON,LLC2024.Allrightsreserved.

HACKINGADASMODEL

•ADASunitcanbeapathwaytototalvehiclecompromiseasitneedstobeaccessibleonCANnetworkandupdateable

•Researchers:

•Abletooffloadentiremodelfiles,includingoriginalmodelfiles

•Abletoreadthemodelanddeployina$50toycar

•Possibletoupdatemodelonoriginaldevice

•PoorlysecuredADASmodulecanleadtototalvehiclecontrol

•Steering

•Braking

•Powertrain

Copyright©SERJON,LLC2024.Allrightsreserved.

DEFENDINGAI

Copyright©SERJON,LLC2024.Allrightsreserved.

AI-WHATISTHESAME?

Themorethingschange,themoretheyremainthesame:

•Softwarestackvulnerabilities

•Operatingsystemvulnerabilities

•Softwaresupplychainattacks

•Hardwarefirmware

•PlatformOS

•Browservulnerabilities

•ITandDevSecOpsbestpracticesstillapply

•Sanitizeandvalidateinputsandoutputs

Copyright©SERJON,LLC2024.Allrightsreserved.

AI-WHAT’SDIFFERENT?

•Systemsarebuiltgroundupfromdata,notrequirements

•Awholenewmindsetforadversarialattackvectors

•Increasedsupplychaincomplexity

•Inputvalidationbecomesharderandmoreimportant

•Datahandlingproceduresaremoreimportant

•Erroneous,mislabeled,orincompletedatacanhavebigimpact

•DevSecOpsneedstoincorporatedataandmachinelearningmodels

•Datascientistsneedtounderstandcybersecurity

Copyright©SERJON,LLC2024.Allrightsreserved.

AI–DEFENSIVEBESTPRACTICES

Whilenotanexhaustivelist,herearesomebestpractices:

•ProtectsystemboundariesbetweenITandAI

•Identifyandprotectallproprietarydata

•StrongaccessandauthorizationcontrolsforfinalAImodelweights

•Hardenthedeploymentenvironment

•Applyversionlabelstomodels(changestoweights)

•Validateallinputsforedgecasesandattacks

•Validatealloutputstoensureoperationinsideboundaries(safetybag)

Copyright©SERJON,LLC2024.Allrightsreserved.

DEFENSIVERESOURCES

ThereareseveralrecentgoodpublicationsoncybersecuritybestpracticesfordeployingmachinelearningandAIingeneral:

•NationalCyberSecurityCentre(UK)-Principlesforthesecurityofmachine

learning

.uk/collection/machine-learning

•NationalCyberSecurityCentre(UK)–GuidelinesforsecureAIsystem

development

.uk/collection/guidelines-secure-ai-system-development

•JointCybersecurityInformation-DeployingAISystemsSecurely

/2024/Apr/15/2003439257/-1/-1/0/CSI-DEPLOYING-AI-

SYSTEMS-SECURELY.PDF

Copyright©SERJON,LLC2024.Allrightsreserved.

WRAP-UP

Copyright©SERJON,LLC2024.Allrightsreserved.

AIFUTURE

•Improvementsincustomerservice

•Improvementsinoperationalefficiency

•Developingbetterdesigns

•Assistingindevelopmentofnewmaterials

•Inspectingandevaluatinginfrastructure

•Improvingsafetythroughnewdriverassistancefeatures

•Increasefleetuptime

……ExplainableandtrustworthyAIwillbringmoreapplications

Copyright©SERJON,LLC2024.Allrightsreserved.

FURTHERREADING

IfyouarenewtoAI/ML,Icanhighlyrecommendthefollowingbookasagoodstartingpoint

•Ozdemir,S.,Kakade,S.,&Tibaldeschi,M.(2018).PrincipalsofDataScience(2nded.).PacktPublishing.

/product/principles-of-data

-science-second-edition/9781789804546

Ifyouarelookingforamorein-depthfoundationalbook,Iwouldrecommendthefollowingbook:

•Kelleher,J.D.,MacNamee,B.,&D’Arcy,A.(2015).FundamentalsofMachineLearningforPredictiveDataAnalytics.TheMITPress.

Copyright©SERJON,LLC2024.Allrightsreserved.

FURTHERREADING

Forthosewhowanttogettotheheartofthemathandbuildyourownmodels,includingdeepregressionlearning,Iwouldrecommendthefollowingbook:

•Goodfellow,I.,Bengio,Y.,&Courville,A.(2017).DeepLearning.TheMITPress.Iwouldalsorecommendthefollowingpaperformoreinformationaboutsafety-criticalAIapplicationsintransportationtohelptietogethertheuseofAIintransportation:

•JonPerez-Cerrolaza,JaumeAbella,MarkusBorg,CarloDonzella,Jesús

Cerquides,FranciscoJ.Cazorla,CristoferEnglund,MarkusTauber,George

Nikolakopoulos,andJoseLuisFlores.2024.ArtificialIntelligenceforSafety-CriticalSystemsin

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论