版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届宝坻区第一中学高三下学期第六次检测数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.集合,则集合的真子集的个数是A.1个 B.3个 C.4个 D.7个2.已知曲线且过定点,若且,则的最小值为().A. B.9 C.5 D.3.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件4.已知正方体的棱长为2,点在线段上,且,平面经过点,则正方体被平面截得的截面面积为()A. B. C. D.5.已知向量,若,则实数的值为()A. B. C. D.6.已知复数在复平面内对应的点的坐标为,则下列结论正确的是()A. B.复数的共轭复数是C. D.7.设,则()A. B. C. D.8.若不相等的非零实数,,成等差数列,且,,成等比数列,则()A. B. C.2 D.9.已知实数,满足约束条件,则目标函数的最小值为A. B.C. D.10.抛物线的焦点为,则经过点与点且与抛物线的准线相切的圆的个数有()A.1个 B.2个 C.0个 D.无数个11.已知函数,,若方程恰有三个不相等的实根,则的取值范围为()A. B.C. D.12.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则()A.P1•P2= B.P1=P2= C.P1+P2= D.P1<P2二、填空题:本题共4小题,每小题5分,共20分。13.设函数,则满足的的取值范围为________.14.一个算法的伪代码如图所示,执行此算法,最后输出的T的值为________.15.如图,从一个边长为的正三角形纸片的三个角上,沿图中虚线剪出三个全等的四边形,余下部分再以虚线为折痕折起,恰好围成一个缺少上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱柱的上底,则所得正三棱柱的体积为______.16.已知,那么______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列,,数列满足,n.(1)若,,求数列的前2n项和;(2)若数列为等差数列,且对任意n,恒成立.①当数列为等差数列时,求证:数列,的公差相等;②数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由.18.(12分)已知函数.(1)若函数,试讨论的单调性;(2)若,,求的取值范围.19.(12分)已知函数,其中,.(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.(2)若在处取得极大值,求实数a的取值范围.20.(12分)已知动点到定点的距离比到轴的距离多.(1)求动点的轨迹的方程;(2)设,是轨迹在上异于原点的两个不同点,直线和的倾斜角分别为和,当,变化且时,证明:直线恒过定点,并求出该定点的坐标.21.(12分)已知函数.(1)讨论的单调性;(2)若函数在区间上的最小值为,求m的值.22.(10分)在底面为菱形的四棱柱中,平面.(1)证明:平面;(2)求二面角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由题意,结合集合,求得集合,得到集合中元素的个数,即可求解,得到答案.【详解】由题意,集合,则,所以集合的真子集的个数为个,故选B.【点睛】本题主要考查了集合的运算和集合中真子集的个数个数的求解,其中作出集合的运算,得到集合,再由真子集个数的公式作出计算是解答的关键,着重考查了推理与运算能力.2、A【解析】
根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.【详解】定点为,,当且仅当时等号成立,即时取得最小值.故选:A【点睛】本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.3、A【解析】
根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题4、B【解析】
先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:确定一个平面,因为平面平面,所以,同理,所以四边形是平行四边形.即正方体被平面截的截面.因为,所以,即所以由余弦定理得:所以所以四边形故选:B【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.5、D【解析】
由两向量垂直可得,整理后可知,将已知条件代入后即可求出实数的值.【详解】解:,,即,将和代入,得出,所以.故选:D.【点睛】本题考查了向量的数量积,考查了向量的坐标运算.对于向量问题,若已知垂直,通常可得到两个向量的数量积为0,继而结合条件进行化简、整理.6、D【解析】
首先求得,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项.【详解】由题意知复数,则,所以A选项不正确;复数的共轭复数是,所以B选项不正确;,所以C选项不正确;,所以D选项正确.故选:D【点睛】本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想.7、C【解析】试题分析:,.故C正确.考点:复合函数求值.8、A【解析】
由题意,可得,,消去得,可得,继而得到,代入即得解【详解】由,,成等差数列,所以,又,,成等比数列,所以,消去得,所以,解得或,因为,,是不相等的非零实数,所以,此时,所以.故选:A【点睛】本题考查了等差等比数列的综合应用,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.9、B【解析】
作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值.【详解】解:作出不等式组对应的平面区域如图:目标函数的几何意义为动点到定点的斜率,当位于时,此时的斜率最小,此时.故选B.【点睛】本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键.10、B【解析】
圆心在的中垂线上,经过点,且与相切的圆的圆心到准线的距离与到焦点的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆.【详解】因为点在抛物线上,又焦点,,由抛物线的定义知,过点、且与相切的圆的圆心即为线段的垂直平分线与抛物线的交点,这样的交点共有2个,故过点、且与相切的圆的不同情况种数是2种.故选:.【点睛】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上.11、B【解析】
由题意可将方程转化为,令,,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,①.因为,①式两边同除以,得.所以方程有三个不等的正实根.记,,则上述方程转化为.即,所以或.因为,当时,,所以在,上单调递增,且时,.当时,,在上单调递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.12、C【解析】
将三辆车的出车可能顺序一一列出,找出符合条件的即可.【详解】三辆车的出车顺序可能为:123、132、213、231、312、321方案一坐车可能:132、213、231,所以,P1=;方案二坐车可能:312、321,所以,P1=;所以P1+P2=故选C.【点睛】本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
当时,函数单调递增,当时,函数为常数,故需满足,且,解得答案.【详解】,当时,函数单调递增,当时,函数为常数,需满足,且,解得.故答案为:.【点睛】本题考查了根据函数单调性解不等式,意在考查学生对于函数性质的灵活运用.14、【解析】
由程序中的变量、各语句的作用,结合流程图所给的顺序,模拟程序的运行,即可得到答案.【详解】根据题中的程序框图可得:,执行循环体,,不满足条件,执行循环体,,此时,满足条件,退出循环,输出的值为.故答案为:【点睛】本题主要考查了程序和算法,依次写出每次循环得到的,的值是解题的关键,属于基本知识的考查.15、1【解析】
由题意得正三棱柱底面边长6,高为,由此能求出所得正三棱柱的体积.【详解】如图,作,交于,,由题意得正三棱柱底面边长,高为,所得正三棱柱的体积为:.故答案为:1.【点睛】本题考查立体几何中的翻折问题、正三棱柱体积的求法、三棱柱的结构特征等基础知识,考查空间想象能力、运算求解能力,求解时注意翻折前后的不变量.16、【解析】
由已知利用诱导公式可求,进而根据同角三角函数基本关系即可求解.【详解】∵,∴,,∴.故答案为:.【点睛】本小题主要考查诱导公式、同角三角函数的基本关系式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)①见解析②数列不能为等比数列,见解析【解析】
(1)根据数列通项公式的特点,奇数项为等差数列,偶数项为等比数列,选用分组求和的方法进行求解;(2)①设数列的公差为,数列的公差为,当n为奇数时,得出;当n为偶数时,得出,从而可证数列,的公差相等;②利用反证法,先假设可以为等比数列,结合题意得出矛盾,进而得出数列不能为等比数列.【详解】(1)因为,,所以,且,由题意可知,数列是以1为首项,2为公差的等差数列,数列是首项和公比均为4的等比数列,所以;(2)①证明:设数列的公差为,数列的公差为,当n为奇数时,,若,则当时,,即,与题意不符,所以,当n为偶数时,,,若,则当时,,即,与题意不符,所以,综上,,原命题得证;②假设可以为等比数列,设公比为q,因为,所以,所以,,因为当时,,所以当n为偶数,且时,,即当n为偶数,且时,不成立,与题意矛盾,所以数列不能为等比数列.【点睛】本题主要考查数列的求和及数列的综合,数列求和时一般是结合通项公式的特征选取合适的求和方法,数列综合题要回归基本量,充分挖掘题目已知信息,细思细算,本题综合性较强,难度较大,侧重考查逻辑推理和数学运算的核心素养.18、(1)答案不唯一,具体见解析(2)【解析】
(1)由于函数,得出,分类讨论当和时,的正负,进而得出的单调性;(2)求出,令,得,设,通过导函数,可得出在上的单调性和值域,再分类讨论和时,的单调性,再结合,恒成立,即可求出的取值范围.【详解】解:(1)因为,所以,①当时,,在上单调递减.②当时,令,则;令,则,所以在单调递增,在上单调递减.综上所述,当时,在上单调递减;当时,在上单调递增,在上单调递减.(2)因为,可知,,令,得.设,则.当时,,在上单调递增,所以在上的值域是,即.当时,没有实根,且,在上单调递减,,符合题意.当时,,所以有唯一实根,当时,,在上单调递增,,不符合题意.综上,,即的取值范围为.【点睛】本题考查利用导数研究函数的单调性和根据恒成立问题求参数范围,还运用了构造函数法,还考查分类讨论思想和计算能力,属于难题.19、(1)答案见解析(2)【解析】
(1)假设函数的图象与x轴相切于,根据相切可得方程组,看方程是否有解即可;(2)求出的导数,设(),根据函数的单调性及在处取得极大值求出a的范围即可.【详解】(1)函数的图象不能与x轴相切,理由若下:.假设函数的图象与x轴相切于则即显然,,代入中得,无实数解.故函数的图象不能与x轴相切.(2)(),,设(),恒大于零.在上单调递增.又,,,∴存在唯一,使,且时,时,①当时,恒成立,在单调递增,无极值,不合题意.②当时,可得当时,,当时,.所以在内单调递减,在内单调递增,所以在处取得极小值,不合题意.③当时,可得当时,,当时,.所以在内单调递增,在内单调递减,所以在处取得极大值,符合题意.此时由得即,综上可知,实数a的取值范围为.【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.20、(1)或;(2)证明见解析,定点【解析】
(1)设,由题意可知,对的正负分情况讨论,从而求得动点的轨迹的方程;(2)设其方程为,与抛物线方程联立,利用韦达定理得到,所以,所以直线的方程可表示为,即,所以直线恒过定点.【详解】(1)设,动点到定点的距离比到轴的距离多,,时,解得,时,解得.动点的轨迹的方程为或(2)证明:如图,设,,由题意得(否则)且,所以直线的斜率存在,设其方程为,将与联立消去,得,由韦达定理知,,①显然,,,,将①式代入上式整理化简可得:,所以,此时,直线的方程可表示为,即,所以直线恒过定点.【点睛】本题主要考查了动点轨迹,考查了直线与抛物线的综合,是中档题.21、(1)见解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJF(陕) 021-2020 万用量规校准规范
- 幼儿园小班探索未来的活动计划
- 《信用证种类》课件
- 社团活动的数字化转型探索计划
- 护理部患者安全管理措施计划
- 班级自主管理的实施案例研究计划
- 少先队大队委员竞选讲义模板
- 《设备的开孔和附》课件
- 《酒店企业文化培训》课件
- 《数值试验题》课件
- 未来当兵职业生涯规划书
- 自动控制原理及应用知到智慧树章节测试课后答案2024年秋新疆工程学院
- 带状疱疹中医护理
- 生物脊椎动物(鱼)课件-2024-2025学年人教版生物七年级上册
- 光伏电站风险评估与应对措施
- 浙江省杭州市拱墅区2023-2024学年六年级(上)期末数学试卷
- 网络安全培训
- 《大学生劳动教育》课件第一章 新时代大学生的劳动价值观
- 【事业单位考试真题】《综合基础知识》必看考点《刑法》(2021年版)(附答案解析)
- 《Python程序设计》课件-1:开发环境搭建
- 第7课《谁是最可爱的人》课件-2023-2024学年统编版语文七年级下册
评论
0/150
提交评论