烟台市重点中学2025届高考数学考前最后一卷预测卷含解析_第1页
烟台市重点中学2025届高考数学考前最后一卷预测卷含解析_第2页
烟台市重点中学2025届高考数学考前最后一卷预测卷含解析_第3页
烟台市重点中学2025届高考数学考前最后一卷预测卷含解析_第4页
烟台市重点中学2025届高考数学考前最后一卷预测卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

烟台市重点中学2025届高考数学考前最后一卷预测卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正项等比数列的前项和为,则的最小值为()A. B. C. D.2.已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p=()A.1 B. C.2 D.43.如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为()A.2 B.3 C.4 D.54.已知等差数列的公差为,前项和为,,,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数().A.6 B.5 C.4 D.35.若复数满足,则()A. B. C. D.6.双曲线的右焦点为,过点且与轴垂直的直线交两渐近线于两点,与双曲线的其中一个交点为,若,且,则该双曲线的离心率为()A. B. C. D.7.已知函数,若,则a的取值范围为()A. B. C. D.8.已知,则的大小关系是()A. B. C. D.9.已知函数在上单调递增,则的取值范围()A. B. C. D.10.已知函数,若函数的所有零点依次记为,且,则()A. B. C. D.11.的二项展开式中,的系数是()A.70 B.-70 C.28 D.-2812.已知集合,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知矩形ABCD,AB=4,BC=3,以A,B为焦点,且过C,D两点的双曲线的离心率为____________.14.已知,,且,则最小值为__________.15.的角所对的边分别为,且,,若,则的值为__________.16.已知,若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)随着时代的发展,A城市的竞争力、影响力日益卓著,这座创新引领型城市有望踏上向“全球城市”发起“冲击”的新征程.A城市的活力与包容无不吸引着无数怀揣梦想的年轻人前来发展,目前A城市的常住人口大约为1300万.近日,某报社记者作了有关“你来A城市发展的理由”的调查问卷,参与调查的对象年龄层次在25~44岁之间.收集到的相关数据如下:来A城市发展的理由人数合计自然环境1.森林城市,空气清新2003002.降水充足,气候怡人100人文环境3.城市服务到位1507004.创业氛围好3005.开放且包容250合计10001000(1)根据以上数据,预测400万25~44岁年龄的人中,选择“创业氛围好”来A城市发展的有多少人;(2)从所抽取选择“自然环境”作为来A城市发展的理由的300人中,利用分层抽样的方法抽取6人,从这6人中再选取3人发放纪念品.求选出的3人中至少有2人选择“森林城市,空气清新”的概率;(3)在选择“自然环境”作为来A城市发展的理由的300人中有100名男性;在选择“人文环境”作为来A城市发展的理由的700人中有400名男性;请填写下面列联表,并判断是否有的把握认为性别与“自然环境”或“人文环境”的选择有关?自然环境人文环境合计男女合计附:,.P()0.0500.0100.001k3.8416.63510.82818.(12分)如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.(1)求异面直线AP,BM所成角的余弦值;(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为,求λ的值.19.(12分)“绿水青山就是金山银山”,为推广生态环境保护意识,高二一班组织了环境保护兴趣小组,分为两组,讨论学习.甲组一共有人,其中男生人,女生人,乙组一共有人,其中男生人,女生人,现要从这人的两个兴趣小组中抽出人参加学校的环保知识竞赛.(1)设事件为“选出的这个人中要求两个男生两个女生,而且这两个男生必须来自不同的组”,求事件发生的概率;(2)用表示抽取的人中乙组女生的人数,求随机变量的分布列和期望20.(12分)已知函数,.(1)若对于任意实数,恒成立,求实数的范围;(2)当时,是否存在实数,使曲线:在点处的切线与轴垂直?若存在,求出的值;若不存在,说明理由.21.(12分)以平面直角坐标系的原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,已知曲线,曲线(为参数),求曲线交点的直角坐标.22.(10分)某工厂为提高生产效率,需引进一条新的生产线投入生产,现有两条生产线可供选择,生产线①:有A,B两道独立运行的生产工序,且两道工序出现故障的概率依次是0.02,0.03.若两道工序都没有出现故障,则生产成本为15万元;若A工序出现故障,则生产成本增加2万元;若B工序出现故障,则生产成本增加3万元;若A,B两道工序都出现故障,则生产成本增加5万元.生产线②:有a,b两道独立运行的生产工序,且两道工序出现故障的概率依次是0.04,0.01.若两道工序都没有出现故障,则生产成本为14万元;若a工序出现故障,则生产成本增加8万元;若b工序出现故障,则生产成本增加5万元;若a,b两道工序都出现故障,则生产成本增加13万元.(1)若选择生产线①,求生产成本恰好为18万元的概率;(2)为最大限度节约生产成本,你会给工厂建议选择哪条生产线?请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由,可求出等比数列的通项公式,进而可知当时,;当时,,从而可知的最小值为,求解即可.【详解】设等比数列的公比为,则,由题意得,,得,解得,得.当时,;当时,,则的最小值为.故选:D.【点睛】本题考查等比数列的通项公式的求法,考查等比数列的性质,考查学生的计算求解能力,属于中档题.2、C【解析】

设直线l的方程为x=y,与抛物线联立利用韦达定理可得p.【详解】由已知得F(,0),设直线l的方程为x=y,并与y2=2px联立得y2﹣py﹣p2=0,设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),∴y1+y2=p,又线段AB的中点M的纵坐标为1,则y0(y1+y2)=,所以p=2,故选C.【点睛】本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题.3、A【解析】

根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,故选:A.【点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.4、C【解析】

若对任意的恒成立,则为的最大值,所以由已知,只需求出取得最大值时的n即可.【详解】由已知,,又三角形有一个内角为,所以,,解得或(舍),故,当时,取得最大值,所以.故选:C.【点睛】本题考查等差数列前n项和的最值问题,考查学生的计算能力,是一道基础题.5、C【解析】

化简得到,,再计算复数模得到答案.【详解】,故,故,.故选:.【点睛】本题考查了复数的化简,共轭复数,复数模,意在考查学生的计算能力.6、D【解析】

根据已知得本题首先求出直线与双曲线渐近线的交点,再利用,求出点,因为点在双曲线上,及,代入整理及得,又已知,即可求出离心率.【详解】由题意可知,代入得:,代入双曲线方程整理得:,又因为,即可得到,故选:D.【点睛】本题主要考查的是双曲线的简单几何性质和向量的坐标运算,离心率问题关键寻求关于,,的方程或不等式,由此计算双曲线的离心率或范围,属于中档题.7、C【解析】

求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式.【详解】由得,在时,是增函数,是增函数,是增函数,∴是增函数,∴由得,解得.故选:C.【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解.8、B【解析】

利用函数与函数互为反函数,可得,再利用对数运算性质比较a,c进而可得结论.【详解】依题意,函数与函数关于直线对称,则,即,又,所以,.故选:B.【点睛】本题主要考查对数、指数的大小比较,属于基础题.9、B【解析】

由,可得,结合在上单调递增,易得,即可求出的范围.【详解】由,可得,时,,而,又在上单调递增,且,所以,则,即,故.故选:B.【点睛】本题考查了三角函数的单调性的应用,考查了学生的逻辑推理能力,属于基础题.10、C【解析】

令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.11、A【解析】试题分析:由题意得,二项展开式的通项为,令,所以的系数是,故选A.考点:二项式定理的应用.12、A【解析】

根据对数性质可知,再根据集合的交集运算即可求解.【详解】∵,集合,∴由交集运算可得.故选:A.【点睛】本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】

根据为焦点,得;又求得,从而得到离心率.【详解】为焦点在双曲线上,则又本题正确结果:【点睛】本题考查利用双曲线的定义求解双曲线的离心率问题,属于基础题.14、【解析】

首先整理所给的代数式,然后结合均值不等式的结论即可求得其最小值.【详解】,结合可知原式,且,当且仅当时等号成立.即最小值为.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.15、【解析】

先利用余弦定理求出,再用正弦定理求出并把转化为与边有关的等式,结合可求的值.【详解】因为,故,因为,所以.由正弦定理可得三角形外接圆的半径满足,所以即.因为,解得或(舍).故答案为:.【点睛】本题考查正弦定理、余弦定理在解三角形中的应用,注意结合求解目标对所得的方程组变形整合后整体求解,本题属于中档题.16、1【解析】

由题意先求得的值,可得,再令,可得结论.【详解】已知,,,,令,可得,故答案为:1.【点睛】本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的赋值,求展开式的系数和,可以简便的求出答案,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(万)(2)(3)填表见解析;有的把握认为性别与“自然环境”或“人文环境”的选择有关【解析】

(1)在1000个样本中选择“创业氛围好”来A城市发展的有300个,根据频率公式即可求得结果.(2)由分层抽样的知识可得,抽取6人中,4人选择“森林城市,空气清新”,2人选择“降水充足,气候怡人”求出对应的基本事件数,即可求得结果.(3)计算的值,对照临界值表可得答案.【详解】(1)(万)(2)从所抽取选择“自然环境”作为来A城市发展理由的300人中,利用分层抽样的方法抽取6人,其中4人是选择“森林城市,空气清新”,2人是选择“降水充足,气候怡人”.记事件A为选出的3人中至少有2人选择“森林城市,空气清新”,则,.(3)列联表如下自然环境人文环境合计男100400500女200300500合计3007001000,所以有的把握认为性别与“自然环境”或“人文环境”的选择有关.【点睛】本题主要考查独立性检测的相关知识、分层抽样与古典概念计算概率、考查学生的综合分析与计算能力,难度较易.18、(1).(2)1【解析】

(1)先根据题意建立空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.(2,由AN=λ,设N(0,λ,0)(0≤λ≤4),则=(-1,λ-1,-2),再求得平面PBC的一个法向量,利用直线MN与平面PBC所成角的正弦值为,由|cos〈,〉|===求解.【详解】(1)因为PA⊥平面ABCD,且AB,AD⊂平面ABCD,所以PA⊥AB,PA⊥AD.又因为∠BAD=90°,所以PA,AB,AD两两互相垂直.分别以AB,AD,AP为x,y,z轴建立空间直角坐标系,则由AD=2AB=2BC=4,PA=4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4).又因为M为PC的中点,所以M(1,1,2).所以=(-1,1,2),=(0,0,4),所以cos〈,〉===,所以异面直线AP,BM所成角的余弦值为.(2)因为AN=λ,所以N(0,λ,0)(0≤λ≤4),则=(-1,λ-1,-2),=(0,2,0),=(2,0,-4).设平面PBC的法向量为=(x,y,z),则即令x=2,解得y=0,z=1,所以=(2,0,1)是平面PBC的一个法向量.因为直线MN与平面PBC所成角的正弦值为,所以|cos〈,〉|===,解得λ=1∈[0,4],所以λ的值为1.【点睛】本题主要考查了空间向量法研究空间中线线角,线面角的求法及应用,还考查了转化化归的思想和运算求解的能力,属于中档题.19、(Ⅰ);(Ⅱ)分布列见解析,.【解析】

(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由题得可能取值为,再求x的分布列和期望.【详解】(Ⅰ)(Ⅱ)可能取值为,,,,,的分布列为0123.【点睛】本题主要考查古典概型的计算,考查随机变量的分布列和期望的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1);(2)不存在实数,使曲线在点处的切线与轴垂直.【解析】

(1)分类时,恒成立,时,分离参数为,引入新函数,利用导数求得函数最值即可;(2),导出导函数,问题转化为在上有解.再用导数研究的性质可得.【详解】解:(1)因为当时,恒成立,所以,若,为任意实数,恒成立.若,恒成立,即当时,,设,,当时,,则在上单调递增,当时,,则在上单调递减,所以当时,取得最大值.,所以,要使

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论