版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1
TheAlibabaGlobalMathematicsCompetition(Hangzhou2018)consistsof3problems.Eachconsistsof3questions:a,b,andc.
Thisdocumentincludesanswersforyourreference.Itisimportanttonotethattherearemultipleanswerstoeachquestion.Ifyousubmitteddifferentanswers,youmaystillgetpoints.Wetrytowritetheanswersratherthoroughly.Itdoesnotmeanyouranswersneedtobeasdetailed.Thisdocumentisneitherarubricnoragradingguide.Theauthorsoftheseanswersarenotthegraders.
(correction11)
Problem1.
DuringtheAlibaba11.11ShoppingFestival,StoreAissues“5RMBoff60RMB”stackablecoupons.“Stackable”meansthemultiplecouponscanbeappliedtoasingleorder.Forexample,anorderof120RMBatlistprice,canbereducedto110RMBbyapplyingtwosuchcoupons.
StoreAispartofT.Tissuesa“60RMBoff299RMB”coupon,limitedtooneperorder.Thiscouponappliestothelistpriceandisstackablewithanyindividualstorecoupons.Forexample,toaproductlistedat299RMBinaTstore,onepaysonly299RMB-(thestorediscountbasedon299RMB)-60RMB.Ifthetotallistpriceisslightlybelow299RMB,customersoftenaddsfilleritem(s)(suchassocksortissues)fromotherTstorestoreach299RMBandthenapplythecoupon.
XiaoMingwillbuya250RMBpairofheadphonesanda600RMBspeakersetfromTStoreA.XiaoMinghasunlimitedaccesstothetwotypesofcouponsdescribed.Whatistheleastamountthathemustpay?
Answer:709RMB.Togetthisanswer,wehaveusedfilleritemsfromotherstore(s).Theanswerwillbereducedto705RMBiftherearefilleritemssolelyfromStoreA(butthisislesslikelytoholdinpractice.)Below,weexplainthestepstoget709RBM.
Belowwecomparebuyingbothitemsinoneorderandbuyingthemintwoseparateorders.Thelatterat709ischeaper.
Buythetwoitemsinoneorder:Thefinalcostis
250(headphones’listprice)+600(speakerset’slistprice)
60
−14×5apply(l250+600J=14“5-off-60”storecoupons)
−60(shoppingcartcoupon)
=720.
Buythetwoitemsseparately:Thetwoorderscost709,whichbreaksdowntothefollowingtwoorders:Theheadphonepaircosts
60
250−4×5(applyl250」=4storecoupons)
+49(filleritemstoreach299totallistprice)−60(shoppingcartcoupon)
=219. (1)
1changelog:“50RMBoff299RMB”iscorrectedto“60RMBoff299RMB”
PAGE
10
Ifoneforgetstousefilleritems,s/hewillpay250−20=230,whichis11more.Thespeakersetcosts
60
600−10×5(applyl600」=10storecoupons)
−60(shoppingcartcoupon)
=490. (2)
Hencealltogether219+490=709RMB.
YouplantoopenyourownTstore,called“StoreB,”sellingthesameheadphonesandspeakersetatthesamelistpricesasStoreAdoes.Yourstoresellsonlythesetwomodels.
Youplantoissue“xRMBoff99RMB”coupons,limitedtooneperorder,wherexisanintegergreaterthan0andsmallerthan99.(Forexample,thediscountforanorderof250RMBisxRMB,not2xRMB).TheT“60RMBoff299RMB”couponcanbeappliedtopurchasesatstoreBandcanbestackedwithyour“xRMBoff99RMB”coupon.
WhatistheminimalnumberxsuchthatXiaoMingcanspendatleast1RMBlessoneitherthe250RMBpairoftheheadphonesorthe600RMBspeakerssetinyourStoreBthaninStoreA?
WhatistheminimalnumberxsuchthatXiaoMingcanspendatleast1RMBlessforbuyingboththe250RMBpairoftheheadphonesandthe600RMBspeakerssetinyourStoreBthaninStoreA?
Toclarify,thecomparisonisbetweenthecostswiththecouponsappliedoptimally.
Answers:1stquestion:21ifusingfilleritemsfromotherstoresand25ifusingfilleritemsfromStoreA;2ndquestion:36forthe2ndquestionifusingfilleritemsfromotherstoresand38ifusingfilleritemsfromStoreA.Below,wegivethestepsassumeweusefilleritemsfromotherstores.
The1stquestion.Tobuyaheadphonepairinyourstore,onepays250−x+49(filler)−
60(shoppingcartcoupon)=239−x.Similarly,weget540−xforthespeakerset.
Foryourstoretocostlessontheheadphonepair,xmustsatisfy239−x≤219(1),orx≥21.Foryourstoretocostlessonthespeakerpair,xmustsatisfy540−x≤490−1(2),orx≥51.Whenx=21,weensuretheheadphonepairtobecheaper,notthespeakersetthough.
The2ndquestion.Tobuybothitemsinyourstore,itischeapertobuythemintwoseparateorderssincewecanapplythecoupontoeachordertogetatotaldiscountof2x.
2
Thepartabovehastheformulasforthetwoorders:(239–x)and(540–x).Theirtotalmustbecheaperthan709,whichistheanswerinpart2.Thatis(239–x)+(540–x)≤709−1,orx≥35.5.Sincexisaninteger,wesetx=36forthisquestion.
Mathematicalmodelingofproductbundling.SupposethatthetotalcostsofItem1andItem2arec1andc2(includingproduction,storage,transportation,promotion,etc.),respectively.WhenacustomervisitstheTstore,s/heperceivesthevaluesoftheseitemsatS1andS2,respectively.WesupposethatS1andS2arerandomvariablesthatareindependentlyanduniformlydistributedontheintervals[0,u1]and[0,u2],respectively.Therearethreequestions.
2DuetodifferentunderstandingoftheChineseversion,both36and51canbetakenasthecorrectanswer,becausethere,onemayunderstandthatonemightnothavetobuybothitemsinyourstoreorbothitemsinstoreA.
Whatisthevalueforp1,thepriceforItem1,thatmaximizestheexpectedprofitforeachvisitingcustomer?Here,assumethatavisitingcustomerwillpurchaseonepieceofItem1ifS1≥p1,andifso,yourprofitis(p1−c1).Pleaseprovideaformula.Similarly,whatisthevalueforp2thatmaximizestheexpectedprofitforeachvisitingcustomer?
2
Answer:optimalpricep∗=ui+ciandexpectedprofitr∗=(ui−ci)
fori=1,2.
i 2 i 4ui
Sincethestepsareidenticalfori=1,2,wedropiforbrevity.LetRbetherandomvariable
ofprofit,whichdependsonS.Wecalculateitsexpectation:
r=ES(R)=ES((p−c)δbuy)
r
=ES((p−c)δp≤S)
u 1
0
= (p−c)δp≤s·uds
1
ss=u
=(p−c)us=p
=(p−c)(u−p).u
u
Alternatively,wecanobtainthesameexpectedprofitdirectlyastheproductofprofit,(p−c),andtheprobabilityofbuying,u−p.
u
2
Thefunctionr(p):=(p−c)(u−p)isaconcavequadraticfunction,soitsmaximumisattainedatthepointp∗suchthatrt(p∗)=0ifp∗isontheintervalofitsallowedvalues,[0,u].Indeed,rt(p∗)=0yieldsp∗=u+c,whichisthemaximizerifc≤u(otherwise,p∗=u,
whichisatrivialcase).
Withp∗=u+c,wegetr∗=r(p∗)=(u−c)2.
2 4u
−
AssumewearegoingtosellabundleitemincludingoneunitofItem1andoneunitofItem2atpricep12.Thetotalcostofthisitemist(c1+c2),where0<t<1.Assumeavisitingcustomerwillpurchaseonepieceofthisbundleif(S1+S2)≥p12,andifso,yourprofitisp12t(c1+c2).Determinethepricep12tomaximizetheexpectedprofitforeachvisitingcustomer.Pleaseprovideaformula.
Answer:thepricep12thatmaximizestheexpectedreturnis
3
12
2
1(c12+✓c2+6u1u2),c12∈[0,3u1−u2]
12
4
2
2
p∗=
1(u1+2u2+2c12), c12∈[3u1−u2,u2−1u1]
3
2
1(u1+u2+2c12), c12∈[u2−1u1,u1+u2].
12
Notethatp∗iscontinuouswithrespecttoc12,includingonetheboundarypointsofthree
intervals,soonecanincludeeachboundarypointineitherorbothoftheneighboringintervals.
Alsonotethatthecalculationisnotunique.Studentscanfindtherightanswerbydrawingapictureandusinggeometry.
12
Nomatterwhichapproachisused,ittakesthefollowingthreestepstocomputep∗.
Step1.DefinerandomvariableS12:=S1+S2.ComputethedistributionofS12,denotedbyp12.Thisisnotauniformdistribution.
ru1+u2
su1u2
, s∈[0,u1]
p12(s):=Pr(S=s)=
1
u2
p1(z−y)p2(y)dy=···= , s∈[u1,u2]
u1u2
2
1
2
0 u1+u2−s,s∈[u,u
+u].
Step2.ComputetheexpectedprofitasafunctionofS12,whichis
ES12
((p12−c12)δbuy)=
u1s
(r
+
uu
u21
r
+
u
u1+u2u1+u2−s
r \
uu
(p12−c12)δp12≤s12ds12
0 12 u1 2 u2 12
12
2u1u2
12
1
1−p2, p ∈[0,u]
u2
2u2
=···=(p12−c12)×
1−p12+u1,p12∈[u1,u2]
2u1u2
12
2
1
2
(u1+u2−p12)2, p
∈[u,u
+u].
( )
Forp12/∈[0,u1+u2],wehaveES12(p12−c12)δbuy≤0aslongasc12≥0.
Step3.Overeachoftheintervals,maximizetheexpectedprofit.Thatistofindtheprofit
12
maximizerp∗withineachoftheintervals.
p2
2u1u2
Forp12∈[0,u1],settingthederivativeof(p12−c12)(1−12)to0yields
12
3
12
12
p∗=1(c
+✓c2
+6uu).
12
1
2
Drawthecurveorcheckthesecondderivative,anditiseasytoseetheabovep∗
isa
12
3
maximizer.Fromp∗≤u1,wegetc12≤u1−u2,whichistheconditionunderwhichthe
2
12
abovep∗isthemaximizeroftheexpectedprofit.
12
Usingsimilarsteps,weobtainedp∗
intheothertwocasesandtheircorrespondingintervals
ofc12.
IfyoumustchoosebetweensellingItems1and2separatelyandsellingtheminabundle,whichonedoyouchoose?Isonestrategyalwaysbetterthantheother?Why?
Answer:Neitherstrategyisalwaysbetterthantheother.
Toestablishthisclaim,itissufficienttouseapairofexamples,oneshowingonestrategybetterthantheother,andtheothershowingtheotherwayaround.Therearemanysuchexamples,sowedonotspecifyone.
Problem2:
Theattachedfigureisanundirectedgraph.Thecirclednumbersrepresentthenodes,andthenumbersalongtheedgesaretheirlengths(symmetricalinbothdirections).
1
1
2
2
3
1
4
1
2
2
5
1
6
1
B2
7
1
8
1
1
1
3
9
3
10
1
11C2
2
2
1
12
2
13
1
14
1
15
A B1 B3
C1 C3
AnAlibabaHemaXianshengcarrierstartsatpointAandwillpickupthreeordersfrommerchantsB1,B2,B3anddeliverthemtothreecustomersC1,C2,C3,respectively.Thecarrierdrivesascooterwithatrunkthatholdsatmosttwoordersatanytime.Alltheordershaveequalsize.
FindtheshortesttravelroutethatstartsatAandendsatthelastdelivery.Tosimplifythisquestion,assumenowaitingtimeduringeachpickupanddelivery.
Answer:Theshortesttraveldistanceis16,attainedbythecarriertakingthefollowingstops:
A-v--B2-v--C2-v--B1-v--B3-v--C3-v--C1.
Therearetwoslightlydifferentrouteswiththesamelengthof16:
Route1:
2(A)→6→7(B2)→8→11(C2)→8→3(B1)→4(B3)→15→14→13(C3)→12(C1);
Route2:
2(A)→6→7(B2)→10→11(C2)→8→3(B1)→4(B3)→15→14→13(C3)→12(C1).
Eitherroutewillreceivethefullpoints.
Enumeratingallthefullroutesandcomputingtheirlengthswouldbeexhaustive.However,thisproblemcanbesolvedwithoutacompleteenumerationbecausethegraphisaplanargraphandtheedgelengthsaresuchthatthetraveldirectionisalwayswith90degreesofthedestination.Thismeans,theshortestpathbetweenanytwonodesiseasytofind.
{ }
Tosolvethisproblembyhand,onecanfirstguessagood(notnecessarilyoptimal)sequenceoutofB1,C1,B2,C2,B3,C3andcalculateitstraveldistance.Indeed,thereareseveralsequencesthatallleadtoadistanceof17.Ifyougetaslightlyhigherone,itisfine.Thedistance
{ }
becomesanupperboundoftheshortestdistance.Then,startenumeratingallthesequencesfromB1,C1,B2,C2,B3,C3buteliminatethoseonceapartoftheirtotaldistancereaches17.Whenyoufindaroutewithdistance16,itbecomesthenewupperbound.Thisprocedureiscalledbranchandbound.
Thisquestionisunrelatedtothegraphshowninparta;instead,weconsiderageneralgraphofmanynodesandedges.Supposethatthecarrierjustpickedupanorder(wecallittheoriginalorder)andwilltravelthroughtheedgese1,e2,...,eminthegraphtodeliverthisoriginalorder.Whens/hetravelsthroughanedgee,s/hemaypickupaneworderforthesamedestinationfromamerchantlocatedsomewhereonthisedge,atprobabilityPe∈[0,1].Suchprobabilitiescorrespondingtotheedgese1,e2,...,emareP1,P2,...,Pm.Weignoretheprobabilityoftwoormoresuchnewpickupsoneachedgeeastheytendtobeverysmall.
Whatistheexpectednumberofneworder(s)forthesamedestinationthatthiscarriercanpickupoverthegivenroute(disregardingthetrunkcapacity)?
Whatistheprobabilitythats/hepicksupatleastoneneworderforthesamedestinationoverthegivenroute?
Answer:Forthe1stquestion,P1+P2+···+Pm.Letui∈{0,1}bethenumberofpickupoveredgeei,fori=1,...,m.Wecangetouranswerfrom
E(u1+u2+···+um)=E(u1)+E(u2)+···+E(um)=P1+P2+···+Pm.
− − −
Forthe2ndquestion,1−(1−P1)(1−P2)...(1−Pm).Here,(1−Pi)istheprobabilityofnopickupovereiand,bystatisticalindependence,(1P1)(1P2)...(1Pm)isthatofnopickupovertheentireroute,so1minusthisproductistheprobabilityofpickingupatleastoneorder.
Alternatively,onecanuseconditionalprobabilitytoobtaintherecursion:
( )
P1+(1−P1)Pr(atleastonenewpickupaftere1)
=P1+(1−P1)P2+(1−P2)Pr(atleastonenewpickupaftere2)
=...
=P1+(1−P1)(P2+(1−P2)(P3+...(Pm−1+(1−Pm−1)Pm)))).
Thisrecursionisalsoarightanswer.
Bothoftheaboveanswersarealsoequalto
m
kX=1
k+1
(−1)
X
distincti1,...,ik∈{1,...,m}
Pi1Pi2
...Pi.
k
−
Thisquestionisafollowupofpartb.Inthisquestion,wenolongerfixtherouteinpartbbutfindonetomaximizethecarrier’sprofit.Supposethatthecarrierreceivesafixedrewardofrforeachdeliveryandspends£,whichequalsthetotallengthsoftheedgesthats/hetravelsfrompickuptodelivery.Intotal,s/hemakesaprofitofr£onthisdelivery.(Wehavesetthecostfactoroftraveldistanceto1,forsimplicity.)
Supposethatthecarrierjustpickeduptheoriginalorderandhasthisorderonly.Whatishis/heroptimalrouteassumingthescooter’strunkhasacapacityof2orders?Youshallconsiderboththetraveldistanceasacostandthepossibleadditionalprofitofrforpickingupaneworder.Becauseanyneworderhasthesamedestination,itstravelcostisignored.Also,supposethat0≤Pe≤min{£e/r,1},where£eisthelengthofedgeeandPeisdefinedinpartb.
Answer:Assume,withoutlossofgenerality,thereareTnodesandTisthedesti-nationnode.First,fromeverynodei,findtheshortestpathtoTanditsshortesttraveldistanceci(ifthereisatiebetweenmultiplepathswiththesamedistance,breakitarbitrarily.)Fori=T,wehavecT=0.
/
Next,using{c1,c2,...,cT},computetheoptimalexpectedfuturerewardriateverynodei,usingthemaximizationformula(3)givenbelow.Fori=T,letjibetheadjacentnodeofithatattainsthemaximum(again,ifthereisatie,breakitarbitrarily.)
Thecarrier’sbestrouteisdecidedateachnodeasfollows:atnodei,ifthecarrierhasyettopickupanextraorder,traveltoji;ifthecarrierhaspickedupanextraorder,thenhis/hertrunkhasreachedthemaximumcapacity,sofollowtheshortestpathfromitoT.
Notethattheaboverouteisnotpredeterminedbutdecidedasthecarriertravels.Inotherword,itisastrategyorpolicy.Itisbetterthanfollowinganypredeterminedroutebecausethebestwaydependsonwhetheranextrapickupismadeornot.
Whenthecarrierisatanodeiandhasnotmadeasecondpickup,decidingwherethecarriershouldgousestheexpectationofthe“profittogo”,whichfurtherdependsonbothpickupprobabilitiesandtraveldistancetoT.
Defineriastheoptimalexpectedfutureprofitatnodeibeforeanextrapickup.Fori=T,weletrT=r,whichisthefixedreward.Supposewehavecalculatedrjfortheadjacentnodesofi.Ati,ifwetraveltotheadjacentnodej,thentheexpectedfutureprofitbecomes:
(2r−cj)−£(i,j),ifapickupoccursover(i,j),happeningwithprobabilityP(i,j);
rj−£(i,j),ifapickupdoesnotoccursover(i,j),happeningwithprobability1−P(i,j),where£(i,j)isthelengthofedge(i,j).Themaximumoveralltheadjacentnodesis
ri= max
jisadjacenttoi
= max
jisadjacenttoi
{P(i,j)((2r−cj)−£(i,j))+(1−P(i,j))(rj−£(i,j))}
{(1−P(i,j))rj+P(i,j)(2r−cj)−£(i,j)}. (3)
ThisisknownastheBellmanequation.
{}
GivenrT=rand(3),wecancomputeriusingeitherdynamicprogramming,ormorespecifi-callyforgraphs,BellmanFord’salgorithmorDijkstra’salgorithm(seethejustificationbelow).TheyallstartfromrT=randiterativelydeterminetheelementsof{ri}.
≤ ≤
TheconditionPe£e/r,orrPe£e,avoidsthepresenceofany“positiverewardcycle”,whichifexistswouldgivethecarrierthemotivationtocyclearoundtoincreasehis/herexpectedrewarduntilanextraorderisfinallypickedup,whichisunrealistic.
{}
Notethat,Dijkstra’salgorithm,whichstudentstendtouseovertheotherchoices,requiresa“nonnegativeedgelength”condition.So,ifoneappliesittocomputeri,theyshouldverifythatcondition.Forourproblem,thatistoshow
(1−P(i,j))rj+P(i,j)(2r−cj)−£(i,j)≤rj. (4)
≤
UndertheproblemassumptionPe£e/r,thisconditionindeedholds.Letusseewhy.SincethecarriercandonoworsethantravelingalongtheshortestpathtoT(ratherthanchoosinganodethatmaximizestheexpectedprofit),wehave
r−cj≤rj,
whichyieldsthesecondinequalityin
P(i,j)r+(P(i,j)r−£(i,j))≤P(i,j)r≤P(i,j)(cj+rj),
≤
wherethefirstinequalityfollowsfromtheproblemassumptionP(i,j)r £(i,j).Weget(4)bycombiningtheinequalitiesabove.
Problem3:
⇒
⇒ /
ProfessorMahasformulatedndifferentbutequivalentstatementsA1,A2,...,An.Everysemester,headvisesastudenttoproveanimplicationAi Aj,i=j.Thisisthedissertationtopicofthisstudent.Everysemester,hehasonlyonestudent,andweassumethatthisstudentfinishesher/hisdissertationwithinthesemester.Nodissertationshouldbeadirectlogicalconsequenceofpreviouslygivenones.Forexample,ifAi⇒AjandAj⇒Akhavealreadybeenusedasdissertationtopics,ProfessorMacannotuseAi Akasanewdissertationtopic,astheimpli-cationfollowsfromthepreviousdissertations.WhatisthemaximalnumberofstudentsthatProfessorMacanadvise?
2
−
2
Answer:Wewillfirstconstructananswerwith1(n+2)(n1)students.Then,wewillshowthisisthebestpossibleanswer.Wealsopresentanalternativeconstructiveproofthatyields1(n+2)(n−1).
− ⇒ ⇒ ··· ⇒
Construction.First,(n−1)studentssequentiallyproveA1⇒Aifori=2,...,n.Then,(n−2)studentssequentiallyproveA2⇒Aifori=3,...,n.Continuethisuntil1studentprovesAn−1⇒An.NotethatallimplicationsprovensofararevalidtheseandhavetheformAi⇒Ajfori<j.Next,(n1)studentssequentiallyproveAnAn−1,An−1An−2,,A2A1,whicharealsovalidtheses.Thetotalnumberofthesesis
((n−1)+(n−2)+···+1)+(n−1)=1n(n−1)+(n−1)=1(n+2)(n−1).
2 2
2
Letf(k):=1(k+2)(k−1).
{ | ⇒ }
Proofofoptimality.ConsideragraphG=(N,E)withnodesN={1,2,...,n}anddirectededgesE=(i,j)AiAjhasbeenshown.Completingathesis,i.e.,provinganimplication,meansaddinganedgetoE.
−
{ | ⇒ ⇒ }⊆
DefineEt:=(i,j)AiAjandAjAihavebeenshownEbethesetof“dualedges.”ThesubgraphGt=(N,Et)hasatmost2(n1)directededges;otherwise,theremustbeacycleofdualedges,whichcontainsinvalidtheses.
− −
− − − − −
− −
−
Ghasatmostn(n1)/2pairsofnodes.Removethepairsofnodeswiththedualedges,andaswehaveargued,thereareatmost2(n1)directededgesandthusatmost(n1)suchpairs,leavinguswithn(n1)/2(n1)=(n2)(n1)/2pairsofnodeswitheitherone-wayedgesornoedgeinbetween.Inotherwords,thereareatmost(n2)(n1)/2one-wayedges.Therefore,addingthemaximalnumbersofone-wayanddualedgesgivesus
1
(n−2)(n−1)/2+2(n−1)=2(n+2)(n−1)=f(n).
Anotherapproachthatisaconstructiveproof.ConsideragraphG=(N,E)withnodes
N={A1,A2,...,An}anddirectededgesE={(Ai,Aj)|thestatementAi⇒Ajhasbeenshown}.CompletingathesisAi⇒Ajmeansaddingthedirectededge(Ai,Aj)toE.
WesayAiimpliesAjandwriteitasAi-v--AjifEcontainsapath(asuccessionofhead-to-tailconnectededges)fromAitoAj.
WesayS⊆Nisamaxequivalentclass(MEC)ifAi-v--Aj,foralli,j∈S,andanylargerSt⊃Sdoeshavethisproperty.Bythisdefinition,ifAi-v--Ajandj∈S,thenwehaveAi-v--Akforallk∈S;hence,wewritethisasAi-v--S.Similarly,ifAi-v--Ajforsomei∈S,wewrite
S-v--Aj.Also,ifS1,S2aretwodistinctMECsandAi-v--Ajforsomei∈S1,j∈S2,thenwewriteS1-v--S2.
{}{} {}
ForanyMECSandi/∈S,wedonothaveAi-v--SandS-v--AiduetothemaximalityofS.DependingonE,thesetNmaybepartitionedtothelargestMEC,Nitself,andatmost
nindividualdistinctMECs,1,2,...,n.Eachthesismay,butnotnecessarily,jointwo
distinctMECsintotheirunionMEC.EachthesiscannotjointhreeormoredistinctMECsintotheunionMEC.
Therefore,ourproblemreducestofindingthemaximalsequenceofvalidthesesthatturnthen
individualMECs{1},{2},...,{n}intoanMECofsizen.
Forintegerx>0,letf(x)bethemaximalnumberofsequentiallyvalidthesesthatgeneratesanMECofsizex,startingfromxindividualdistinctMECs.Clearly,f(1)=0.
∈{ −} −
≥ −
Foranyn2,onemustformanMECofsizenbyjoiningtwoMECsofsizesxandnx,forsomex1,...,n1.BeforethetwoMECsarejoined,thereareatmostx(nx)same-wayedgesbetweenthem,andanopposite-wayedgecompletestheirjoining.Therefore,
f(n)= max
x∈{1,...,n−1}
{f(x)+f(n−x)+x(n−x)+1}.
Startingfromf(1)=0,wecanusethisformulatocomputef(2),f(3),Calculationyields
1
f(n)=2(n+2)(n−1).
− −
Foreachn,thetermthatattainsthemaximum(s
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业间融资借款合同范本
- 酒店物资采购销售合同
- 政府单位采购合同中的保密条款
- 快餐配送协议样式
- 永州市房产买卖协议范例
- 建筑拆除合同样本
- 木材供应订购协议
- 消防工程分包协议书规范
- 购销合同和采购合同的差异与对比
- 路灯安装服务合同协议书模板
- 面试评估表及评分标准及面试评估表及评估标准
- 消防安全重点单位规范化管理手册
- 【拓展阅读】类文阅读《王羲之吃墨》
- 热电厂机组A级检修策划书
- 浙教版数学八年级下册全册优质课件
- 第三讲:苏联模式兴衰
- GB/T 5623-2008产品电耗定额制定和管理导则
- GB/T 41002-2022儿童箱包通用技术规范
- 光学5(光的偏振)
- GB/T 20833-2007旋转电机定子线棒及绕组局部放电的测量方法及评定导则
- 2023年企业法律顾问服务进度月报
评论
0/150
提交评论