四川省广元市高中名校2025届高考数学三模试卷含解析_第1页
四川省广元市高中名校2025届高考数学三模试卷含解析_第2页
四川省广元市高中名校2025届高考数学三模试卷含解析_第3页
四川省广元市高中名校2025届高考数学三模试卷含解析_第4页
四川省广元市高中名校2025届高考数学三模试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省广元市高中名校2025届高考数学三模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数满足线性约束条件,则的取值范围为()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]2.已知抛物线C:,过焦点F的直线l与抛物线C交于A,B两点(A在x轴上方),且满足,则直线l的斜率为()A.1 B.C.2 D.33.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的极差为60 B.7月份的利润最大C.这12个月利润的中位数与众数均为30 D.这一年的总利润超过400万元4.已知正四面体外接球的体积为,则这个四面体的表面积为()A. B. C. D.5.已知,则()A. B. C. D.26.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是()A. B.C. D.7.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数构成乐音的是()A. B. C. D.8.已知函数若函数在上零点最多,则实数的取值范围是()A. B. C. D.9.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A. B. C. D.10.设,,则的值为()A. B.C. D.11.已知双曲线C的两条渐近线的夹角为60°,则双曲线C的方程不可能为()A. B. C. D.12.已知双曲线(,)的左、右顶点分别为,,虚轴的两个端点分别为,,若四边形的内切圆面积为,则双曲线焦距的最小值为()A.8 B.16 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中常数项是___________.14.已知直线被圆截得的弦长为2,则的值为__15.若,则________,________.16.在中,角A,B,C的对边分别为a,b,c,且,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)年,山东省高考将全面实行“选”的模式(即:语文、数学、外语为必考科目,剩下的物理、化学、历史、地理、生物、政治六科任选三科进行考试).为了了解学生对物理学科的喜好程度,某高中从高一年级学生中随机抽取人做调查.统计显示,男生喜欢物理的有人,不喜欢物理的有人;女生喜欢物理的有人,不喜欢物理的有人.(1)据此资料判断是否有的把握认为“喜欢物理与性别有关”;(2)为了了解学生对选科的认识,年级决定召开学生座谈会.现从名男同学和名女同学(其中男女喜欢物理)中,选取名男同学和名女同学参加座谈会,记参加座谈会的人中喜欢物理的人数为,求的分布列及期望.,其中.18.(12分)如图,在三棱柱中,平面,,且.(1)求棱与所成的角的大小;(2)在棱上确定一点,使二面角的平面角的余弦值为.19.(12分)已知动圆E与圆外切,并与直线相切,记动圆圆心E的轨迹为曲线C.(1)求曲线C的方程;(2)过点的直线l交曲线C于A,B两点,若曲线C上存在点P使得,求直线l的斜率k的取值范围.20.(12分)已知.(1)若,求函数的单调区间;(2)若不等式恒成立,求实数的取值范围.21.(12分)在中,内角所对的边分别为,已知,且.(I)求角的大小;(Ⅱ)若,求面积的取值范围.22.(10分)在直角坐标系中,直线的参数方程为为参数),直线的参数方程(为参数),若直线的交点为,当变化时,点的轨迹是曲线(1)求曲线的普通方程;(2)以坐标原点为极点,轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线的极坐标方程为,,点为射线与曲线的交点,求点的极径.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

作出可行域,表示可行域内点与定点连线斜率,观察可行域可得最小值.【详解】作出可行域,如图阴影部分(含边界),表示可行域内点与定点连线斜率,,,过与直线平行的直线斜率为-1,∴.故选:B.【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题表示动点与定点连线斜率,由直线与可行域的关系可得结论.2、B【解析】

设直线的方程为代入抛物线方程,利用韦达定理可得,,由可知所以可得代入化简求得参数,即可求得结果.【详解】设,(,).易知直线l的斜率存在且不为0,设为,则直线l的方程为.与抛物线方程联立得,所以,.因为,所以,得,所以,即,,所以.故选:B.【点睛】本题考查直线与抛物线的位置关系,考查韦达定理及向量的坐标之间的关系,考查计算能力,属于中档题.3、D【解析】

直接根据折线图依次判断每个选项得到答案.【详解】由图可知月收入的极差为,故选项A正确;1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:.【点睛】本题考查了折线图,意在考查学生的理解能力和应用能力.4、B【解析】

设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积.【详解】将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,设正四面体ABCD的外接球的半径为R,则,得.因为正四面体ABCD的外接球和正方体的外接球是同一个球,则有,∴.而正四面体ABCD的每条棱长均为正方体的面对角线长,所以,正四面体ABCD的棱长为,因此,这个正四面体的表面积为.故选:B.【点睛】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.5、B【解析】

结合求得的值,由此化简所求表达式,求得表达式的值.【详解】由,以及,解得..故选:B【点睛】本小题主要考查利用同角三角函数的基本关系式化简求值,考查二倍角公式,属于中档题.6、D【解析】构造函数,令,则,由可得,则是区间上的单调递减函数,且,当x∈(0,1)时,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;当x∈(1,+∞)时,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函数,当x∈(-1,0)时,f(x)>0,(x2-1)f(x)<0∴当x∈(-∞,-1)时,f(x)>0,(x2-1)f(x)>0.综上所述,使得(x2-1)f(x)>0成立的x的取值范围是.本题选择D选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.7、C【解析】

由基本音的谐波的定义可得,利用可得,即可判断选项.【详解】由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波,由,可知若,则必有,故选:C【点睛】本题考查三角函数的周期与频率,考查理解分析能力.8、D【解析】

将函数的零点个数问题转化为函数与直线的交点的个数问题,画出函数的图象,易知直线过定点,故与在时的图象必有两个交点,故只需与在时的图象有两个交点,再与切线问题相结合,即可求解.【详解】由图知与有个公共点即可,即,当设切点,则,.故选:D.【点睛】本题考查了函数的零点个数的问题,曲线的切线问题,注意运用转化思想和数形结合思想,属于较难的压轴题.9、A【解析】

阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.10、D【解析】

利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.【详解】,,,,,,,,故选:D.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.11、C【解析】

判断出已知条件中双曲线的渐近线方程,求得四个选项中双曲线的渐近线方程,由此确定选项.【详解】两条渐近线的夹角转化为双曲渐近线与轴的夹角时要分为两种情况.依题意,双曲渐近线与轴的夹角为30°或60°,双曲线的渐近线方程为或.A选项渐近线为,B选项渐近线为,C选项渐近线为,D选项渐近线为.所以双曲线的方程不可能为.故选:C【点睛】本小题主要考查双曲线的渐近线方程,属于基础题.12、D【解析】

根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.【详解】根据题意,画出几何关系如下图所示:设四边形的内切圆半径为,双曲线半焦距为,则所以,四边形的内切圆面积为,则,解得,则,即故由基本不等式可得,即,当且仅当时等号成立.故焦距的最小值为.故选:D【点睛】本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、-160【解析】试题分析:常数项为.考点:二项展开式系数问题.14、1【解析】

根据弦长为半径的两倍,得直线经过圆心,将圆心坐标代入直线方程可解得.【详解】解:圆的圆心为(1,1),半径,

因为直线被圆截得的弦长为2,

所以直线经过圆心(1,1),

,解得.故答案为:1.【点睛】本题考查了直线与圆相交的性质,属基础题.15、【解析】

根据诱导公式和二倍角公式计算得到答案.【详解】,故.故答案为:;.【点睛】本题考查了诱导公式和二倍角公式,属于简单题.16、【解析】

利用正弦定理将边化角,即可容易求得结果.【详解】由正弦定理可知,,即.故答案为:.【点睛】本题考查利用正弦定理实现边角互化,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有的把握认为喜欢物理与性别有关;(2)分布列见解析,.【解析】

(1)根据题目所给信息,列出列联表,计算的观测值,对照临界值表可得出结论;(2)设参加座谈会的人中喜欢物理的男同学有人,女同学有人,则,确定的所有取值为、、、、.根据计数原理计算出每个所对应的概率,列出分布列计算期望即可.【详解】(1)根据所给条件得列联表如下:男女合计喜欢物理不喜欢物理合计,所以有的把握认为喜欢物理与性别有关;(2)设参加座谈会的人中喜欢物理的男同学有人,女同学有人,则,由题意可知,的所有可能取值为、、、、.,,,,.所以的分布列为:所以.【点睛】本题考查了独立性检验、离散型随机变量的概率分布列.离散型随机变量的期望.属于中等题.18、(1)(2)【解析】试题分析:(1)因为AB⊥AC,A1B⊥平面ABC,所以以A为坐标原点,分别以AC、AB所在直线分别为x轴和y轴,以过A,且平行于BA1的直线为z轴建立空间直角坐标系,由AB=AC=A1B=2求出所要用到的点的坐标,求出棱AA1与BC上的两个向量,由向量的夹角求棱AA1与BC所成的角的大小;

(2)设棱B1C1上的一点P,由向量共线得到P点的坐标,然后求出两个平面PAB与平面ABA1的一个法向量,把二面角P-AB-A1的平面角的余弦值为,转化为它们法向量所成角的余弦值,由此确定出P点的坐标.试题解析:解(1)如图,以为原点建立空间直角坐标系,则,.,故与棱所成的角是.(2)为棱中点,设,则.设平面的法向量为,,则,故而平面的法向量是,则,解得,即为棱中点,其坐标为.点睛:本题主要考查线面垂直的判定与性质,以及利用空间向量求二面角.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19、(1);(2).【解析】

(1)根据抛物线的定义,结合已知条件,即可容易求得结果;(2)设出直线的方程,联立抛物线方程,根据直线与抛物线相交则,结合由得到的斜率关系,即可求得斜率的范围.【详解】(1)因为动圆与圆外切,并与直线相切,所以点到点的距离比点到直线的距离大.因为圆的半径为,所以点到点的距离等于点到直线的距离,所以圆心的轨迹为抛物线,且焦点坐标为.所以曲线的方程.(2)设,,由得,由得且.,,同理由,得,即,所以,由,得且,又且,所以的取值范围为.【点睛】本题考查由抛物线定义求抛物线方程,涉及直线与抛物线相交结合垂直关系求斜率的范围,属综合中档题.20、(1)答案不唯一,具体见解析(2)【解析】

(1)分类讨论,利用导数的正负,可得函数的单调区间.(2)分离出参数后,转化为函数的最值问题解决,注

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论