版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省沈阳市大东区高考数学一模试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,分别为所对的边,若函数有极值点,则的范围是()A. B.C. D.2.已知二次函数的部分图象如图所示,则函数的零点所在区间为()A. B. C. D.3.若满足,且目标函数的最大值为2,则的最小值为()A.8 B.4 C. D.64.若实数、满足,则的最小值是()A. B. C. D.5.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元6.已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,,则()A. B.C.6 D.7.已知实数满足约束条件,则的最小值为()A.-5 B.2 C.7 D.118.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则9.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为A. B. C. D.10.下图所示函数图象经过何种变换可以得到的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为 B.复数在复平面内对应的点位于第三象限C.的共轭复数 D.12.如图,在平行四边形中,为对角线的交点,点为平行四边形外一点,且,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数有两个极值点、,则的取值范围为_________.14.已知双曲线C:()的左、右焦点为,,为双曲线C上一点,且,若线段与双曲线C交于另一点A,则的面积为______.15.如图所示,在边长为4的正方形纸片中,与相交于.剪去,将剩余部分沿,折叠,使、重合,则以、、、为顶点的四面体的外接球的体积为________.16.已知向量,满足,,且已知向量,的夹角为,,则的最小值是__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足:对任意,都有.(1)若,求的值;(2)若是等比数列,求的通项公式;(3)设,,求证:若成等差数列,则也成等差数列.18.(12分)在三棱柱中,,,,且.(1)求证:平面平面;(2)设二面角的大小为,求的值.19.(12分)己知点,分别是椭圆的上顶点和左焦点,若与圆相切于点,且点是线段靠近点的三等分点.求椭圆的标准方程;直线与椭圆只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于,两点,求面积的取值范围.20.(12分)已知四棱锥中,底面为等腰梯形,,,,丄底面.(1)证明:平面平面;(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.21.(12分)已知椭圆过点且椭圆的左、右焦点与短轴的端点构成的四边形的面积为.(1)求椭圆C的标准方程:(2)设A是椭圆的左顶点,过右焦点F的直线,与椭圆交于P,Q,直线AP,AQ与直线交于M,N,线段MN的中点为E.①求证:;②记,,的面积分别为、、,求证:为定值.22.(10分)已知数列是公比为正数的等比数列,其前项和为,满足,且成等差数列.(1)求的通项公式;(2)若数列满足,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型.首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.2、B【解析】由函数f(x)的图象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上单调递增,又g(0)=1-b<0,g(1)=e+2-b>0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.3、A【解析】
作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值.【详解】作出可行域,如图所示由,可得.平移直线,当直线过可行域内的点时,最大,即最大,最大值为2.解方程组,得..,当且仅当,即时,等号成立.的最小值为8.故选:.【点睛】本题考查简单的线性规划,考查基本不等式,属于中档题.4、D【解析】
根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.5、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.6、D【解析】
先根据向量坐标运算求出和,进而求出,代入题中给的定义即可求解.【详解】由题意,则,,得,由定义知,故选:D.【点睛】此题考查向量的坐标运算,引入新定义,属于简单题目.7、A【解析】
根据约束条件画出可行域,再将目标函数化成斜截式,找到截距的最小值.【详解】由约束条件,画出可行域如图变为为斜率为-3的一簇平行线,为在轴的截距,最小的时候为过点的时候,解得所以,此时故选A项【点睛】本题考查线性规划求一次相加的目标函数,属于常规题型,是简单题.8、D【解析】试题分析:,,故选D.考点:点线面的位置关系.9、B【解析】
推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率.【详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个,基本事件总数,6和28恰好在同一组包含的基本事件个数,∴6和28恰好在同一组的概率.故选:B.【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.10、D【解析】
根据函数图像得到函数的一个解析式为,再根据平移法则得到答案.【详解】设函数解析式为,根据图像:,,故,即,,,取,得到,函数向右平移个单位得到.故选:.【点睛】本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.11、D【解析】
利用的周期性先将复数化简为即可得到答案.【详解】因为,,,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.12、D【解析】
连接,根据题目,证明出四边形为平行四边形,然后,利用向量的线性运算即可求出答案【详解】连接,由,知,四边形为平行四边形,可得四边形为平行四边形,所以.【点睛】本题考查向量的线性运算问题,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
确定函数的定义域,求导函数,利用极值的定义,建立方程,结合韦达定理,即可求的取值范围.【详解】函数的定义域为,,依题意,方程有两个不等的正根、(其中),则,由韦达定理得,,所以,令,则,,当时,,则函数在上单调递减,则,所以,函数在上单调递减,所以,.因此,的取值范围是.故答案为:.【点睛】本题考查了函数极值点问题,考查了函数的单调性、最值,将的取值范围转化为以为自变量的函数的值域问题是解答的关键,考查计算能力,属于中等题.14、【解析】
由已知得即,,可解得,由在双曲线C上,代入即可求得双曲线方程,然后求得直线的方程与双曲线方程联立求得点A坐标,借助,即可解得所求.【详解】由已知得,又,,所以,解得或,由在双曲线C上,所以或,所以或(舍去),因此双曲线C的方程为.又,所以线段的方程为,与双曲线C的方程联立消去x整理得,所以,,所以点A坐标为,所以.【点睛】本题主要考查直线与双曲线的位置关系,考查双曲线方程的求解,考查求三角形面积,考查学生的计算能力,难度较难.15、【解析】
将三棱锥置入正方体中,利用正方体体对角线为三棱锥外接球的直径即可得到答案.【详解】由已知,将三棱锥置入正方体中,如图所示,,故正方体体对角线长为,所以外接球半径为,其体积为.故答案为:.【点睛】本题考查三棱锥外接球的体积问题,一般在处理特殊几何体的外接球问题时,要考虑是否能将其置入正(长)方体中,是一道中档题.16、【解析】
求的最小值可以转化为求以AB为直径的圆到点O的最小距离,由此即可得到本题答案.【详解】如图所示,设,由题,得,又,所以,则点C在以AB为直径的圆上,取AB的中点为M,则,设以AB为直径的圆与线段OM的交点为E,则的最小值是,因为,又,所以的最小值是.故答案为:【点睛】本题主要考查向量的综合应用问题,涉及到圆的相关知识与余弦定理,考查学生的分析问题和解决问题的能力,体现了数形结合的数学思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)3;(2);(3)见解析.【解析】
(1)依据下标的关系,有,,两式相加,即可求出;(2)依据等比数列的通项公式知,求出首项和公比即可。利用关系式,列出方程,可以解出首项和公比;(3)利用等差数列的定义,即可证出。【详解】(1)因为对任意,都有,所以,,两式相加,,解得;(2)设等比数列的首项为,公比为,因为对任意,都有,所以有,解得,又,即有,化简得,,即,或,因为,化简得,所以故。(3)因为对任意,都有,所以有,成等差数列,设公差为,,,,,由等差数列的定义知,也成等差数列。【点睛】本题主要考查等差、等比数列的定义以及赋值法的应用,意在考查学生的逻辑推理,数学建模,综合运用数列知识的能力。18、(1)证明见解析;(2).【解析】
(1)要证明平面平面,只需证明平面即可;(2)取的中点D,连接BD,以B为原点,以,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,分别计算平面的法向量为与平面的法向量为,利用夹角公式计算即可.【详解】(1)在中,,所以,即.因为,,,所以.所以,即.又,所以平面.又平面,所以平面平面.(2)由题意知,四边形为菱形,且,则为正三角形,取的中点D,连接BD,则.以B为原点,以,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,则,,,,.设平面的法向量为,且,.由得取.由四边形为菱形,得;又平面,所以;又,所以平面,所以平面的法向量为.所以.故.【点睛】本题考查面面垂直的判定定理以及利用向量法求二面角正弦值的问题,在利用向量法时,关键是点的坐标要写准确,本题是一道中档题.19、;.【解析】
连接,由三角形相似得,,进而得出,,写出椭圆的标准方程;由得,,因为直线与椭圆相切于点,,解得,,因为点在第二象限,所以,,所以,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,求出面积的取值范围.【详解】解:连接,由可得,,,椭圆的标准方程;由得,,因为直线与椭圆相切于点,所以,即,解得,,即点的坐标为,因为点在第二象限,所以,,所以,所以点的坐标为,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,当且仅当,即时,有最大值,所以,即面积的取值范围为.【点睛】本题考查直线和椭圆位置关系的应用,利用基本不等式,属于难题.20、(1)见证明;(2)【解析】
(1)先证明等腰梯形中,然后证明,即可得到丄平面,从而可证明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如图的空间坐标系,求出平面的法向量为,平面的法向量为,由可得到答案.【详解】(1)证明:在等腰梯形,,易得在中,,则有,故,又平面,平面,,即平面,故平面丄平面.(2)在梯形中,设,,,,而,即,.以点为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图的空间坐标系,则,,设平面的法向量为,由得,取,得,,同理可求得平面的法向量为,设二面角的平面角为,则,所以二面角的余弦值为.【点睛】本题考查了两平面垂直的判定,考查了利用空间向量的方法求二面角,考查了棱锥的体积的计算,考查了空间想象能力及计算能力,属于中档题.21、(1);(2)①证明见解析;②证明见解析【解析】
(1)解方程即可;(2)①设直线,,,将点的坐标用表示,证明即可;②分别用表示,,的面积即可.【详解】(1)解之得:的标准方程为:(2)①,,设直线代入椭圆方程:设,,,直线,直线,,,,,.②,所以.【点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年年八年级数学人教版下册专题整合复习卷第21章 二次根式 荔湾区金道中学单元检测AB卷(含答案)
- 8物北师期末阜阳市临泉县2023-2024学年八年级上学期期末考试物理试题
- 《数字影像特征匹配》课件
- 文明科室评选报告范文
- 企业动态报告范文
- 应用文报告的范文
- 《嵌入式系统原理与开发》课件-第7章
- 2025年呼和浩特道路货物运输驾驶员考试
- 2025年乐山货运从业资格证模拟考试题目
- 2025年福建货运从业资格证年考试
- 缅怀伟大领袖,争做时代新人征文
- (学校)基于英语学习活动观的初中英语教学实践详解(中小学教育教研讲座教学培训课件)
- 中国风古风古代诗人作家人物介绍苏东坡传PPT模板
- (完整)消化性溃疡PPT课件ppt
- 2022年军队文职《数学2+物理》真题-1
- 大学英语2(含答案)
- 高中英语 新人教版必修1全册 课件PPT
- 辽宁省大连市2023-2024学年数学四年级第一学期期末达标检测模拟试题含答案
- (完整word版)A3试卷模板
- Excel预埋件重量计算表格
- 全国职业院校技能大赛(食品药品检验赛项)备考试题库(汇总)
评论
0/150
提交评论