版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省阳江市阳东广雅中学2025届高三第二次联考数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数z满足(其中i为虚数单位),则复数z的虚部是()A. B.1 C. D.i2.设为虚数单位,为复数,若为实数,则()A. B. C. D.3.将函数图象上所有点向左平移个单位长度后得到函数的图象,如果在区间上单调递减,那么实数的最大值为()A. B. C. D.4.若集合,,则A. B. C. D.5.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市月至月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是()A.1月至8月空气合格天数超过天的月份有个B.第二季度与第一季度相比,空气达标天数的比重下降了C.8月是空气质量最好的一个月D.6月份的空气质量最差.6.已知集合,则()A. B. C. D.7.函数的大致图象为A. B.C. D.8.已知函数,若则()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)9.已知函数是上的偶函数,是的奇函数,且,则的值为()A. B. C. D.10.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.211.存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是()A. B. C. D.12.将一张边长为的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在四棱锥中,底面为正方形,面分别是棱的中点,过的平面交棱于点,则四边形面积为__________.14.已知函数为上的奇函数,满足.则不等式的解集为________.15.若奇函数满足,为R上的单调函数,对任意实数都有,当时,,则________.16.已知的展开式中项的系数与项的系数分别为135与,则展开式所有项系数之和为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点.(1)求抛物线C的方程;(2)若F在线段上,P是的中点,证明:.18.(12分)在直角坐标系中,曲线的参数方程是(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)在曲线上取一点,直线绕原点逆时针旋转,交曲线于点,求的最大值.19.(12分)选修4-5:不等式选讲设函数f(x)=|x-a|,a<0.(1)证明:f(x)+f(-1(2)若不等式f(x)+f(2x)<12的解集非空,求20.(12分)某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.(i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.可能用到的参考数据:取,.21.(12分)已知椭圆:(),四点,,,中恰有三点在椭圆上.(1)求椭圆的方程;(2)设椭圆的左右顶点分别为.是椭圆上异于的动点,求的正切的最大值.22.(10分)已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB的中点是,(1)求椭圆的方程;(2)过原点的直线l与线段AB相交(不含端点)且交椭圆于C,D两点,求四边形面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由虚数单位i的运算性质可得,则答案可求.【详解】解:∵,∴,,则化为,∴z的虚部为.故选:A.【点睛】本题考查了虚数单位i的运算性质、复数的概念,属于基础题.2、B【解析】
可设,将化简,得到,由复数为实数,可得,解方程即可求解【详解】设,则.由题意有,所以.故选:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题3、B【解析】
根据条件先求出的解析式,结合三角函数的单调性进行求解即可.【详解】将函数图象上所有点向左平移个单位长度后得到函数的图象,则,设,则当时,,,即,要使在区间上单调递减,则得,得,即实数的最大值为,故选:B.【点睛】本小题主要考查三角函数图象变换,考查根据三角函数的单调性求参数,属于中档题.4、C【解析】
解一元次二次不等式得或,利用集合的交集运算求得.【详解】因为或,,所以,故选C.【点睛】本题考查集合的交运算,属于容易题.5、D【解析】由图表可知月空气质量合格天气只有天,月份的空气质量最差.故本题答案选.6、B【解析】
计算,再计算交集得到答案【详解】,表示偶数,故.故选:.【点睛】本题考查了集合的交集,意在考查学生的计算能力.7、A【解析】
因为,所以函数是偶函数,排除B、D,又,排除C,故选A.8、C【解析】
利用导数求得在上递增,结合与图象,判断出的大小关系,由此比较出的大小关系.【详解】因为,所以在上单调递增;在同一坐标系中作与图象,,可得,故.故选:C【点睛】本小题主要考查利用导数研究函数的单调性,考查利用函数的单调性比较大小,考查数形结合的数学思想方法,属于中档题.9、B【解析】
根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【详解】为上的奇函数,,而函数是上的偶函数,,,故为周期函数,且周期为故选:B【点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.10、D【解析】
根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.11、D【解析】
根据题意利用垂直直线斜率间的关系建立不等式再求解即可.【详解】因为过点M椭圆的切线方程为,所以切线的斜率为,由,解得,即,所以,所以.故选:D【点睛】本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题.12、B【解析】设折成的四棱锥的底面边长为,高为,则,故由题设可得,所以四棱锥的体积,应选答案B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设是中点,由于分别是棱的中点,所以,所以,所以四边形是平行四边形.由于平面,所以,而,,所以平面,所以.由于,所以,也即,所以四边形是矩形.而.从而.故答案为:.【点睛】本小题主要考查空间平面图形面积的计算,考查线面垂直的判定,考查空间想象能力和逻辑推理能力,属于中档题.14、【解析】
构造函数,利用导数判断出函数的单调性,再将所求不等式变形为,利用函数的单调性即可得解.【详解】设,则,设,则.当时,,此时函数单调递减;当时,,此时函数单调递增.所以,函数在处取得极小值,也是最小值,即,,,,即,所以,函数在上为增函数,函数为上的奇函数,则,,则不等式等价于,又,解得.因此,不等式的解集为.故答案为:.【点睛】本题主要考查不等式的求解,构造函数,求函数的导数,利用导数和函数单调性之间的关系是解决本题的关键.综合性较强.15、【解析】
根据可得,函数是以为周期的函数,令,可求,从而可得,代入解析式即可求解.【详解】令,则,由,则,所以,解得,所以,由时,,所以时,;由,所以,所以函数是以为周期的函数,,又函数为奇函数,所以.故答案为:【点睛】本题主要考查了换元法求函数解析式、函数的奇偶性、周期性的应用,属于中档题.16、64【解析】
由题意先求得的值,再令求出展开式中所有项的系数和.【详解】的展开式中项的系数与项的系数分别为135与,,,由两式可组成方程组,解得或,令,求得展开式中所有的系数之和为.故答案为:64【点睛】本题考查了二项式定理,考查了赋值法求多项式展开式的系数和,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】
(1)根据抛物线的焦点在直线上,可求得的值,从而求得抛物线的方程;(2)法一:设直线,的方程分别为和且,,,可得,,,的坐标,进而可得直线的方程,根据在直线上,可得,再分别求得,,即可得证;法二:设,,则,根据直线的斜率不为0,设出直线的方程为,联立直线和抛物线的方程,结合韦达定理,分别求出,,化简,即可得证.【详解】(1)抛物线C的焦点坐标为,且该点在直线上,所以,解得,故所求抛物线C的方程为(2)法一:由点F在线段上,可设直线,的方程分别为和且,,,则,,,.∴直线的方程为,即.又点在线段上,∴.∵P是的中点,∴∴,.由于,不重合,所以法二:设,,则当直线的斜率为0时,不符合题意,故可设直线的方程为联立直线和抛物线的方程,得又,为该方程两根,所以,,,.,由于,不重合,所以【点睛】本题考查抛物线的标准方程,考查抛物线的定义,考查直线与抛物线的位置关系,属于中档题.18、(1)(2)最大值为【解析】
(1)利用消去参数,求得曲线的普通方程,再转化为极坐标方程.(2)设出两点的坐标,求得的表达式,并利用三角恒等变换进行化简,再结合三角函数最值的求法,求得的最大值.【详解】(1)由消去得曲线的普通方程为.所以的极坐标方程为,即.(2)不妨设,,,,,则当时,取得最大值,最大值为.【点睛】本小题主要考查参数方程化为普通方程,普通方程化为极坐标方程,考查极坐标系下线段长度的乘积的最值的求法,考查三角恒等变换,考查三角函数最值的求法,属于中档题.19、(1)见解析.(1)(-1,0).【解析】试题分析:(1)直接计算f(x)+f(-1(1)f(x)+f(2x)=|x-a|+|2x-a|,分区间讨论去绝对值符号分别解不等式即可.试题解析:(1)证明:函数f(x)=|x﹣a|,a<2,则f(x)+f(﹣)=|x﹣a|+|﹣﹣a|=|x﹣a|+|+a|≥|(x﹣a)+(+a)|=|x+|=|x|+≥1=1.(1)f(x)+f(1x)=|x﹣a|+|1x﹣a|,a<2.当x≤a时,f(x)=a﹣x+a﹣1x=1a﹣3x,则f(x)≥﹣a;当a<x<时,f(x)=x﹣a+a﹣1x=﹣x,则﹣<f(x)<﹣a;当x时,f(x)=x﹣a+1x﹣a=3x﹣1a,则f(x)≥﹣.则f(x)的值域为[﹣,+∞).不等式f(x)+f(1x)<的解集非空,即为>﹣,解得,a>﹣1,由于a<2,则a的取值范围是(-1,0).考点:1.含绝对值不等式的证明与解法.1.基本不等式.20、(1)60%;(2)(i)0.12(ii)【解析】
(1)利用上线人数除以总人数求解;(2)(i)利用二项分布求解;(ii)甲、乙两市上线人数分别记为X,Y,得,.,利用期望公式列不等式求解【详解】(1)估计本科上线率为.(2)(i)记“恰有8名学生达到本科线”为事件A,由图可知,甲市每个考生本科上线的概率为0.6,则.(ii)甲、乙两市2020届高考本科上线人数分别记为X,Y,依题意,可得,.因为2020届高考本科上线人数乙市的均值不低于甲市,所以,即,解得,又,故p的取值范围为.【点睛】本题考查二项分布的综合应用,考查计算求解能力,注意二项分布与超几何分布是易混淆的知识点.21、(1);(2)【解析】
(1)分析可得必在椭圆上,不在椭圆上,代入即得解;(2)设直线PA,PB的倾斜角分别为,斜率为,可得.则,,利用均值不等式,即得解.【详解】(1)因为关于轴对称,所以必在椭圆上,∴不在椭圆上∴,,即.(2)设椭圆上的点(),设直线PA,PB的倾斜角分别为,斜率为又∴.,,(不妨设).故当且仅当,即时等号成立【点睛】本题考查了直线和椭圆综合,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.22、(1)(2)【解析】
(1)由直线可得椭圆右焦点的坐标为,由中点可得,且由斜率公式可得,由点在椭圆上,则,二者作差,进而代入整理可得,即可求解;(2)设直线,点到直线的距离为,则四边形的面积为,将代入椭圆方程,再利用弦长公式求得,利用点到直线距离求得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论