版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
BISBulletin
No84
Artificialintelligenceincentralbanking
DouglasAraujo,SebastianDoerr,LeonardoGambacortaandBrunoTissot
23January2024
BISBulletinsarewrittenbystaffmembersoftheBankforInternationalSettlements,andfromtimetotimebyothereconomists,andarepublishedbytheBank.Thepapersareonsubjectsoftopicalinterestandaretechnicalincharacter.TheviewsexpressedinthemarethoseoftheirauthorsandnotnecessarilytheviewsoftheBIS.TheauthorsaregratefultoBryanHardyandGaloNuñoforcomments,IlariaMatteiandKrzysztofZdanowiczforexcellentresearchassistance,andtoLouisaWagnerforadministrativesupport.
TheeditoroftheBISBulletinseriesisHyunSongShin.
ThispublicationisavailableontheBISwebsite
()
.
©BankforInternationalSettlements2024.Allrightsreserved.Briefexcerptsmaybereproducedortranslatedprovidedthesourceisstated.
ISSN:2708-0420(online)
ISBN:978-92-9259-738-2(online)
DouglasAraujo
Douglas.Araujo@
SebastianDoerr
Sebastian.Doerr@
LeonardoGambacorta
Leonardo.Gambacorta@
BrunoTissot
Bruno.Tissot@
Artificialintelligenceincentralbanking
Keytakeaways
.Centralbankshavebeenearlyadoptersofmachinelearningtechniquesforstatistics,macroanalysis,paymentsystemsoversightandsupervision,withconsiderablesuccess.
.Artificialintelligencebringsmanyopportunitiesinsupportofcentralbankmandates,butalsochallenges–somegeneralandothersspecifictocentralbanks.
.Centralbankcollaboration,forinstancethroughknowledge-sharingandpoolingofexpertise,holdsgreatpromiseinkeepingcentralbanksatthevanguardofdevelopmentsinartificialintelligence.
Longbeforeartificialintelligence(AI)becameafocalpointofpopularcommentaryandwidespreadfascination,centralbankswereearlyadoptersofmachinelearningmethodstoobtainvaluableinsightsforstatistics,researchandpolicy(Doerretal(2021),Araujoetal(2022,2023)).Thegreatercapabilitiesandperformanceofthenewgenerationofmachinelearningtechniquesopenupfurtheropportunities.Yetharnessingtheserequirescentralbankstobuildupthenecessaryinfrastructureandexpertise.Centralbanksalsoneedtoaddressconcernsaboutdataqualityandprivacyaswellasrisksemanatingfromdependenceonafewproviders.
ThisBulletinfirstprovidesabriefsummaryofconceptsinthemachinelearningandAIspace.Itthendiscussescentralbankusecasesinfourareas:(i)informationcollectionandthecompilationofofficialstatistics;(ii)macroeconomicandfinancialanalysistosupportmonetarypolicy;(iii)oversightofpaymentsystems;and(iv)supervisionandfinancialstability.TheBulletinalsosummarisesthelessonslearnedandtheopportunitiesandchallengesarisingfromtheuseofmachinelearningandAI.Itconcludesbydiscussinghowcentralbankcooperationcanplayakeyrolegoingforward.
OverviewofmachinelearningmethodsandAI
Broadlyspeaking,machinelearningcomprisesthesetoftechniquesdesignedtoextractinformationfromdata,especiallywithaviewtomakingpredictions.Machinelearningcanbeseenasanoutgrowthoftraditionalstatisticalandeconometrictechniques,althoughitdoesnotrelyonapre-specifiedmodeloronstatisticalassumptionssuchaslinearityornormality.Theprocessoffittingamachinelearningmodeltodataiscalledtraining.Thecriterionforsuccessfultrainingistheabilitytopredictoutcomesonpreviouslyunseen(“out-of-sample”)data,irrespectiveofhowthemodelspredictthem.Thissectiondescribessomeofthemostcommontechniquesusedincentralbanks,basedontheregularstocktakingexercisesorganisedinthecentralbankingcommunityundertheumbrellaoftheBISIrvingFisherCommitteeonCentralBankStatistics(IFC).
Tree-basedmethodsareflexiblemachinelearningalgorithmsthatcantackleawiderangeoftasks.Decisiontreesgroupindividualdatapointsbysequentiallypartitioningdataintofinercategoriesaccordingtospecificcharacteristicsofinterest.Forexample,atreemayfirstsorthouses(theinputdata)intothosewithmorethanthreeroomsandthosewithatmostthree,andthenpartitionhousesineachofthese
BISBulletin1
subgroupsintothosebuiltbefore1990andthosebuiltafter,andsoon.Theresultingfinerpartitioningofhousescanthenbecomparedwithaparticulardimensionofinterest(theoutput)toseehowwellthepartitioningmatchesanattributeofinterest.Forinstance,capturinghowhousepricesvaryacrossthefinerpartitioningwouldbeawaytogroupsimilarhousesintermsoftheirprice.
Randomforestscombineseveraltreestrainedondifferentslicesofthesamedatatoimprovepredictionoutofsamplewhileguardingagainsttheriskofoverfittingthetrainingdatasample.Randomforestsandrelatedmodelscanbeseenasamoreflexibleformofregressionanalysis,astheypredictoutputfromtheexplanatoryvariablesofinterest(AtheyandImbens(2021)).Inaddition,tree-basedmethodscanserveasanexploratorytooltogleanpatternsinthedatawithoutimposingamodelstructure.Forinstance,theycanclassifydatapointsintosimilarcategories.Inthesamespirit,forestscanbedeployedinidentifyingoutliersbymeansofisolationforests,amethodthatsinglesoutthedatapointsthatcanbeisolatedfromothers.
Neuralnetworksareperhapsthemostimportanttechniqueinmachinelearning,withwidespreadusesevenforthelatestgenerationofmodels.Theirmainbuildingblocksareartificialneurons,whichtakemultipleinputvaluesandtransformtheminanon-linearwaytooutputasinglenumber–likelogisticregressions.Theartificialneuronsareorganisedtoformasequenceoflayersthatcanbestacked:theneuronsofthefirstlayertaketheinputdataandoutputanactivationvalue.Subsequentlayersthentaketheoutputofthepreviouslayerasinput,transformitandoutputanothervalue,andsoforth.Thisway,similartoneuronsinthehumanbrain,anartificialneuron’soutputvalueisakintoanelectricalimpulsetransmittedtootherneurons.Anetwork’sdepthreferstothenumberoflayers.Eachneuron’sconstantandweightsattachedtotheoutputofpreviouslayers’neuronsarecollectivelycalledparameters;theydeterminethestrengthofconnectionsacrossneuronsandlayers.Theseparametersareimprovediterativelyduringtraining.Deepernetworkswithmoreparametersrequiremoretrainingdatabutpredictmoreaccurately.NeuralnetworksarebehindfacerecognitionorvoiceassistantsinmobilephonesandunderliethemostsignificantrecentinnovationsinAI.
Transformers,unveiledin2017,drasticallyimprovedtheperformanceofneuralnetworksinnaturallanguageprocessing(NLP)andenabledtheriseoflargelanguagemodels(LLMs).Ratherthanjustrelatingawordtothosenearit,transformersattempttocapturetherelationshipbetweenthedifferentcomponentsofatextsequence,eveniftheyarefarapartinthesentence.Thisallowsthemodeltobetterunderstandthecontextandhencedifferentmeaningsawordcanhave.Forexample,themeaningoftheword“bank”differswhenitappearsinthesentence“I’llswimacrosstherivertogettotheotherbank”versus“Icrossedthestreettogotothebank”.TransformersunlockedusecasesofNLPthatrequiredealingwithlongstreamsoftextandgaverisetothemostrecentadvancesinLLMs,suchasChatGPT.
LLMsunderlietherapidriseofgenerativeAI(“genAI”),whichgeneratescontentbasedonsuitableprompts,andcanperformtasksbeyondlanguagerecognition.LLMsareneuralnetworksthataretrainedtopredictthenextwordinagivensequenceoftext.Toperformthistask,LLMslearntoabsorballthewrittenknowledgeonwhichtheyweretrained.Asaresult,theirpredictionisusuallyaccurateevenfortextsthatrequirenuanceorfieldknowledge.LLMscanbefine-tunedforspecifictaskswithspecialiseddata.Forexample,ChatGPTisbasedonanLLMrefinedwithhumanfeedbacktogeneratemoreusefulresponses.KeycharacteristicsofgenAIarethatitcanbeusednotjustbyasmallsetofspecialistsbutbyvirtuallyeverybodyandthatitcaneasilyextractinsightsfromunstructureddata.
MachinelearningandAIincentralbanks:usecases
WhatarethecurrentusecasesofmachinelearningandAIincentralbanks?Theycanbestbeorganisedbyscope:(i)informationcollectionandstatisticalcompilation;(ii)macroeconomicandfinancialanalysistosupportmonetarypolicy;(iii)oversightofpaymentsystems;and(iv)supervisionandfinancialstability.Thissectionprovidesrelevantexamplesineacharea.Moreinformationontheselectedexamples,aswellasabroaderlistofusecases,canbefoundintheannex.
2BISBulletin
Informationcollection
Ensuringtheavailabilityofhigh-qualitydataasinputsforeconomicanalysisandforstatisticscompilationandproductionisamajorchallengeforcentralbanks.Issuesincludedatacleaning,sampling,representativenessandmatchingnewdatatoexistingsources.Thesteadilyincreasingvolumeandcomplexityofdatanecessitateefficientandflexibledataqualitytools.
Toprovidehigh-qualitymicrodata,centralbanksareprogressivelyusingmachinelearningtechniques.Isolationforestsareparticularlysuitableforthelargeandgranulardatasetstypicalofcentralbanks,owingtotheirscalabilityandabilitytoidentifyoutliersregardlessoftheshapeofthedata’sdistribution.Therearealsobenefitstoatwo-stepapproach:initially,amodelautonomouslyidentifiespotentialoutliers,whicharethenreviewedbyexpertswhoprovidefeedbacktorefinethealgorithm.Thisapproachbalancesthevalueofdomainexpertisewiththecostsofhumaninputs.Byanalysingdifferentmethodstoexplaintheoutlierclassification,thisapproachcanovercometheissueof“blackbox”machinelearningmodelslacking“explainability”,whichisdiscussedbelow.Moreover,explainablemachinelearningmethodsprovideexpertswithguidanceonwhichdatapointswarrantmanualverification.
Macroeconomicandfinancialanalysistosupportmonetarypolicy
Centralbanksrelyextensivelyonmacroeconomicandfinancialanalysistosupportmonetarypolicy.Inacomplexenvironment,asignificantchallengeistoefficientlyextractinformationfromawidearrayoftraditionalandnon-traditionaldatasources.Machinelearningoffersvaluabletoolsinthisarea.
Neuralnetworkscan,forexample,breakdownservicesinflationintodifferentcomponents,revealinghowmuchinflationisduetopastpriceincreases,inflationexpectations,theoutputgaporinternationalprices.Suchmodelscanprocessmoreinputvariablesthantraditionaleconometricones,allowingcentralbankstousegranulardatasetsinsteadofmoreaggregatedata.Anotheradvantageisneuralnetworks’abilitytoreflectcomplexnon-linearitiesinthedata,whichcanhelpmodellerstobettercapturenon-linearities,fromthezerolowerboundtounequalassetholdingsandshiftsininflationdynamics.
Otherusecasesareobtainingreal-timeestimates(nowcasts)ofinflationexpectationsorsummarisingeconomicconditionsovertime.Forexample,randomforestmodelscanidentifysocialmediapoststhatarerelatedtopricesandthenfeedthemintoanotherrandomforestmodelthatclassifieseachpostasreflectinginflation,deflationorotherexpectations.Thedifferenceinthedailycountsofsocialmediapostsforhigherversuslowerinflationgaugesinflationexpectations.Similarly,socialmediapostscanbeusedtotrackthecredibilityofcentralbankmonetarypolicywiththewiderpublic.
AnotherexampleistheuseofopensourceLLMsfine-tunedwithfinancialnewstosummariseeconomicconditionnarrativesoveralongtimespan.Modelscanprocesseganecdotaltextsfrominterviewswithentrepreneurs,economistsandmarketexpertstoproduceatimeseriesoftheir(positiveornegative)sentimentvalue.ThesentimentindexcanthenbeusedtonowcastGDPorpredictrecessions.
AdaptingLLMstocentralbankingterminologycanbringfurthergains,asshownbythecentralbanklanguagemodels(CB-LM)projectdevelopedattheBIS(Gambacortaetal(2024)).ThisapproachusesthousandsofcentralbankspeechesandresearchpaperscompiledbytheBISCentralBankHubtoadaptwidelyusedopensourcefoundationLLMsissuedbyGoogleandMeta.Thisadditionaltrainingfocusedoncentralbankingtextsincreasedaccuracyfrom50–60%to90%ininterpretingcentralbankterminologyandidioms.IthasalsoimprovedperformanceintaskssuchasclassifyingFederalOpenMarketCommitteepolicystancesandpredictingmarketreactionstomonetarypolicyannouncements.
Oversightofpaymentsystems
Wellfunctioningpaymentsystemsarefundamentaltothestabilityofthefinancialsystem,yetthevastamountoftransactiondata,oftenwithahighlyskeweddistribution,poseschallengesindistinguishinganomaloustransactionsfromregularones.Correctlyidentifyinganomalouspaymentsiscrucialto
BISBulletin3
addressingissuessuchaspotentialbankfailures,cyberattacksorfinancialcrimesinatimelymanner.Moneylaundering,inparticular,underminestheintegrityandsafetyoftheglobalfinancialsystem.
TheBISInnovationHub’sProjectAurorausessyntheticmoneylaunderingdatatocomparefraudulentpaymentidentificationbyvarioustraditionalandmachinelearningmodels(BISIH(2023)).Themodels,whichincludeisolationforestsandneuralnetworks,undergotrainingwithknown(synthetic)moneylaunderingtransactionsandthenpredictthelikelihoodofmoneylaunderinginunseendata.Machinelearningmodelsoutperformtherule-basedmethodsprevalentinmostjurisdictionsortraditionallogisticregressions.Graphneuralnetworks,whichtakepaymentrelationshipsasinput,identifysuspecttransactionnetworksparticularlywell.Thesemodelscanfunctioneffectivelyevenwithdatapoolingthatsafeguardsconfidentiality,suggestingthatcooperationtojointlyanalysemultipledatabasescanbesecureandbeneficial.Thisillustratesthepotentialformorecooperationbetweenauthorities.
Anotherapproachforoverseeingpaymenttransactionsinvolvestheuseofunsupervisedlearningmethodstoautomaticallysingleouttransactionsthatareworthcloserinspection.Forexample,auto-encodermodels,neuralnetworkswhereboththeinputandoutputlayerslookatthesamedata,distinguishtypicalfromanomalouspaymentsandcandetectnon-lineardynamicssuchasbankruns.Insimulations,thesemodelseffectivelyidentifiedpatternsofsignificantbankdepositwithdrawalsoverseveraldays.Auto-encodersalsoidentifiedarangeofreal-lifeanomaliesinpaymentsystems,includingoperationaldisruptionsamongimportantdomesticbanks.
Supervisionandfinancialstability
Supervisorsanalyseabroadrangeofdatasourcestoefficientlyoverseefinancialinstitutions.Thesesourcesincludetextdocumentssuchasnewsarticles,internalbankdocumentsorsupervisoryassessments.Siftingthroughthiswealthofinformationtoextractrelevantinsightscanbetime-consuming,andwiththeeverincreasingvolumeofdataitbecomesnearlyinsurmountable.Moreover,analysesrelatedtoclimateandcyberriskshaveemergedassupervisorypriorities,buttheylackthecomprehensivedatainfrastructurealreadyinplaceformore“traditional”risks.
Oneavenuepursuedbymanycentralbanksistoconsolidatethewealthofinformationinoneplaceandhelpsupervisoryanalysisofunstructureddata.Forexample,modelsfine-tunedonsupervisorycontenttogetherwithNLPtechniquescanclassifypublicandsupervisorydocuments,undertakesentimentanalysesandidentifytrendingtopics,asdoneintheECB’splatformAthena.Trainingmodelsonalargebodyoftextcombinedwithanexpert-definedlexiconofrelevantwordsandclausescanalsohelpautomatethediscoveryofexcerptscontaininginformationondifferentrisks.Suchmodels,forexampletheFederalReserve’sLEX,facilitatesupervisors’accesstorelevantinformationscatteredacrossmillionsofdocumentsandreducethetimespentreviewingdocumentsubmissions.Classificationmodels,leveragingtree-basedtechniquesorneuralnetworks,canalsohelpidentifyindividualborrowersforwhichlendersunderestimatepotentialcreditlosses,ataskforwhichtheCentralBankofBrazilcreatedADAM.Neuralnetworksthatincludethefirstlayersofatrainednetworkcanimproveidentificationofborrowerswithhighexpectedlosses.Supervisorscanthenrequirefinancialinstitutionstoprovisionexposuresthatarenotsufficientlycovered.
Balancingopportunitiesandchallenges
TheaboveexamplesillustratetheopportunitiesformachinelearningandAItotackleproblemsattheheartofcentralbankmandates.Yettherearealsonewchallenges,somemoregeneralandothersmorespecifictocentralbanks.
Ageneralchallengeistheconflictbetweenaccuracyand“interpretability/explainability”.Sophisticatedmachinelearningmodelscanbecomenearperfectatprediction.Butsincemanyvariablesinteractincomplexandnon-linearways,itcanbedifficulttointerprethowimportantdifferentinputvariablesarefortheresult.Goodpredictioncanhencecomeatthecostofacceptingthattheunderlying
4BISBulletin
modelisa“blackbox”.Thiscan,forexample,makeitchallengingtoassessdiscriminatorybiasesinalgorithms,especiallywhenthesehavebeentrainedonbiaseddatasets.Limitedexplainabilityfurthermeansthatitisdifficulttoexplainmodelbehaviourinhumanterms;forexample,whyinflationispredictedtogouporwhyamortgageapplicationwasrejected.ForgenAImodels,theissuegoesevenfurther,astheysufferfromthe“hallucinationproblem”.Thesemodelsmightpresentafactuallyincorrectanswerasifitwerecorrect.ThehallucinationproblemimpliesthatLLMsneedhumansupervision,especiallyintasksrequiringlogicalreasoning(Perez-CruzandShin(2024)).
Forcentralbanks,theuseofunstructureddatacanoffervaluableinformationthatcanhelpsolvepreviouslyintractableproblems.Manuallyconvertingunstructureddata,inparticulartext,intostructuredformistime-consuming,pronetohumanerrorandinfeasibleatalargerscale.Astheaboveexamplesmakeclear,LLMscanhelpcentralbanksanalyseawiderangeoftextualdata,suchassocialmediaactivity,financialnewsandcentralbanks’ownreports(confidentialorpublic).
Theuseofunstructuredandoftenpersonaldata,however,posesnewchallengesintermsoflegalframeworksanddataprivacy.Traditionally,mostdatawerecollectedandhostedwithinpublicinstitutionswithclearlydefinedaccessrightsandsounddataqualityassuranceprocesses.Butnow,largeswathesofdataarecreatedbyindividualsandfirmsandresidewiththeprivatesector,sometimeswithlittledocumentationpubliclyavailable.Trainingorfine-tuningLLMsmayrequiresignificantamountsofdata,whichcanbeobtained,forexamplebywebscrapinginformationfrommarketplatformsorsocialmedia,butforwhichlegalframeworksoftenremainunclearabouthowandforwhatpurposestheycanbeused.Theavailabilityofunstructuredpersonaldataalsoraisesconcernsaboutethicsandprivacy.Citizenshavearighttoprivacyandmightfeeluncomfortablewithcentralbanksscrutinisingtheirdata.Whileprivacy-enhancingtechnologiesaresteadilyimproving,theyarenotyetadefaultinAImodels.
GreateruseofAIcouldalsohaveprofoundimplicationsforcentralbanks’investmentsininformationtechnology(IT)andhumancapital.Providingadequatecomputingpowerandsoftware,aswellastrainingexistingstaff,involveshighupfrontcosts.Meanwhile,hiringnewstafforretainingexistingstaffwiththerightmixofeconomicunderstandingandprogrammingskillscanbechallenging:thereishighdemandforthisresource,andpublicinstitutionsoftencannotmatchprivatesectorsalariesfortopdatascientists.
However,theseinvestmentscould,overtime,yieldincreasedproductivity.TheaboveexamplessuggestthattheuseofmachinelearningandAIcanmarkedlyraisestaffproductivity–inparticularinsometime-intensivetasksthatrequirecognitivework,suchassummarisingandextractinginformationfromtext(Brynjolfssonetal(2023),NoyandZhang(2023)).Forexample,AIsystemscouldactas“co-pilots”tohumansupervisoryteamsbylearningfromacombinationofregulatorydata,priorsupervisoryactionsandbroadermarketdevelopments.AIcouldalsoimproveanalysisbyfreeingupeconomists’timeforinterpretingdataratherthancollectingandcleaningit.YetAIwillnotmakehumansobsolete.Incorporatingexpertfeedbackcanimprovemodelsandmitigatethehallucinationproblem.Thebusinessexpertiseofstaffhelpstoidentifywheremodelsaddthemostvalueaswellashowtoadaptthemtocentralbank-specifictasks.
Finally,theriseofLLMsandgenerativeAIhasrenewedconcernsaboutdependenceonafewexternalproviders.Largeeconomiesofscalemeanthatthemostpowerfulfoundationmodelsareprovidedbyjustafewlargetechnologyfirms.Beyondthegeneralrisksthatmarketconcentrationposestoinnovationandeconomicdynamism,thishighconcentrationofresourcescouldcreatesignificantfinancialstability,operationalandreputationalrisks.Forexample,greaterrelianceonLLMsandgenAIbyjustafewcompaniesmakesthefinancialsystemsusceptibletospilloversfromITfailuresorcyberattacksontheseproviders.Outagesamongproviderscouldalsoleadtooperationalrisksforcentralbanksandhaverepercussionsfortheirabilitytofulfiltheirmandates.Theriskofoperationalproblemsleadingtoreputationalcostsloomslargeascentralbanks’greatestassetisthepublic’strust(Doerretal(2022)).Atthesametime,ifmanyinstitutionsadoptthesamefewbestinclassalgorithms,theirbehaviourduringstressepisodesmightlookincreasinglyalikeandleadtoundesirablephenomenasuchasliquidityhoarding,interbankrunsandfiresales(DanielsonandUthemann(2023)).
BISBulletin5
Theselessonsunderscorethebenefitsofcooperationamongcentralbanksandotherpublicauthorities.Knowledge-sharingandthepoolingofexpertisearewellestablishedinthecentralbankingcommunity,andcentralbanks’publicpolicymandategivesconsiderablescopeforcooperation,aswellastoestablishacommunityofpracticeformachinelearningandAI.CentralbankcollaborationandthesharingofexperiencescouldalsohelpidentifyareasinwhichAIaddsthemostvalueandhowtoleveragesynergies.Datastandardscouldfacilitatetheautomatedcollectionofrelevantdatafromvariousofficialsources,therebyenhancingthetrainingandperformanceofmachinelearningmodelsthatusemacroeconomicdata(Araujo(2023)).Additionally,thesharingofcodeorpre-trainedmodelsholdmuchpromise.
Centralbankingisparticularlywellsuitedfortheapplicationofmachinelearningtechniquesgiventheavailabilityofstructuredandunstructureddataaswellastheneedforrigorousanalysisinsupportofpolicy.Thesynergiesbetweenmachinelearningandcorecentralbankingdisciplinessuchaseconomics,statisticsandeconometricsarelikelytoplacecentralbanksatthevanguardofadvancesinAI.
References
Araujo,DKG(2023):“gingado:amachinelearninglibraryfocusedoneconomicsandfinance”,BISWorkingPapers,no1122.
Araujo,DKG,GBruno,JMarcucci,RSchmidtandBTissot(2022):“Machinelearningapplicationsincentralbanking:anoverview”,IFCBulletin,no57.
———(2023):“Datascienceincentralbanking:applicationsandtools”,IFCBulletin,no59.
Athey,SandGImbens(2021):“Machinelearningmethodsthateconomistsshouldknowabout”,AnnualReviewofEconomics,no11,pp685–725.
BISInnovationHub(BISIH)(2023):ProjectAurora:thepowerofdata,technologyandcollaborationtocombatmoneylaunderingacrossinstitutionsandborders,May.
Brynjolfsson,E,DLiandLRaymond(2023):“GenerativeAIatwork”,NBERWorkingPapers,no31161.
Danielson,JandAUthemann(2023):“Ontheuseofartificialintelligenceinfinancialregulationsandtheimpactonfinancialstability”,mimeo.
Doerr,S,LGambacortaandJSerena(2021):“Bigdataandmachinelearningincentralbanking”,BISWorkingPapers,no930.
Doerr,S,LGambacorta,TLeach,BLegrosa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东松山职业技术学院《大学劳动教育》2023-2024学年第一学期期末试卷
- 广东石油化工学院《妇产科护理学(实验)》2023-2024学年第一学期期末试卷
- 广东汕头幼儿师范高等专科学校《经济预测与决策》2023-2024学年第一学期期末试卷
- 广东培正学院《模具CAD及数控技术》2023-2024学年第一学期期末试卷
- 七年级上册《第三章 代数式 章末小结与考点检测》课件
- 广东农工商职业技术学院《小学语文教学与研究(二)》2023-2024学年第一学期期末试卷
- 广东理工职业学院《现代港口物流管理》2023-2024学年第一学期期末试卷
- 二年级数学计算题专项练习1000题汇编集锦
- 【名师一号】2020-2021学年新课标版生物必修2-双基限时练19-第七章-现代生物进化理
- 2021成都市高考英语四月信息匹配类、阅读理解自练(13)答案
- 唤醒孩子内驱力家校共育家庭教育PPT课件(带内容)
- 合成气精脱硫催化剂的研究报告
- 滚装客船货物的积载绑扎系固分解课件
- 中控楼装饰装修方案
- 管束干燥机使用说明书
- 三轴试验报告(共12页)
- 学校及周边环境集中整治工作台帐
- 江苏省城市设计编制导则
- 糖尿病随访表(模板)
- 沥青搅拌站建设方案(完整版)
- 监控系统自检报告
评论
0/150
提交评论