版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024/12/23jkhh1第2章II曲线拟合
如果已知函数f(x)在若干点xi(i=1,2,…,n)处的值yi,便可根据插值原理来建立插值多项式作为f(x)的近似。但在科学实验和生产实践中,往往会遇到这样一种情况,即节点上的函数值并不是很精确的,这些函数值是由实验或观测得到的数据,不可避免地带有测量误差,如果要求所得的近似函数曲线精确无误地通过所有的点(xi,yi),就会使曲线保留着一切测试误差。当个别数据的误差较大时,插值效果显然是不理想的。此外,由实验或观测提供的数据个数往往很多,如果用插值法,势必得到次数较高的插值多项式,这样计算起来很烦琐。2024/12/23jkhh2为此,我们希望从给定的数据(xi,yi)出发,构造一个近似函数,不要求函数完全通过所有的数据点,只要求所得的近似曲线能反映数据的基本趋势,如图5-7所示。曲线拟合示意图
换句话说:求一条曲线,使数据点均在离此曲线的上方或下方不远处,所求的曲线称为拟合曲线,它既能反映数据的总体分布,又不至于出现局部较大的波动,更能反映被逼近函数的特性,使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到最小,这就是最小二乘法。2024/12/23jkhh3
2.1最小二乘原理与函数插值问题不同,曲线拟合不要求曲线通过所有已知点,而是要求得到的近似函数能反映数据的基本关系。在某种意义上,曲线拟合更有实用价值。在对给出的实验(或观测)数据作曲线拟合时,怎样才算拟合得最好呢?一般希望各实验(或观测)数据与拟合曲线的偏差的平方和最小,这就是最小二乘原理。两种逼近概念:
插值:在节点处函数值相同.
拟合:在数据点处误差平方和最小2024/12/23jkhh4函数插值是插值函数P(x)与被插函数f(x)在节点处函数值相同,即而曲线拟合函数不要求严格地通过所有数据点,也就是说拟合函数在xi处的偏差(亦称残差)
不都严格地等于零。但是,为了使近似曲线能尽量反映所给数据点的变化趋势,要求按某种度量标准最小。若记向量,即要求向量的某种范数最小,如的1-范数或∞-范数即2024/12/23jkhh5或
最小。为了便于计算、分析与应用,通常要求的2-范数即为最小。这种要求误差(偏差)平方和最小的拟合称为曲线拟合的最小二乘法。2024/12/23jkhh6
(1)直线拟合设已知数据点,分布大致为一条直线。作拟合直线,该直线不是通过所有的数据点,而是使偏差平方和为最小,其中每组数据与拟合曲线的偏差为根据最小二乘原理,应取和使有极小值,故和应满足下列条件:2024/12/23jkhh7即得如下正规方程组
(3.1)例1设有某实验数据如下:12341.361.371.952.2814.09416.84418.47520.963
用最小二乘法求以上数据的拟合函数解:把表中所给数据画在坐标纸上,将会看到数据点的分布可以用一条直线来近似地描述,设所求的
2024/12/23jkhh8拟合直线为记x1=1.36,x2=1.37,x3=1.95x4=2.28,y1=14.094,y2=16.844,y3=18.475,y4=20.963则正规方程组为
其中将以上数据代入上式正规方程组,得解得
即得拟合直线2024/12/23jkhh9(2)多项式拟合有时所给数据点的分布并不一定近似地呈一条直线,这时仍用直线拟合显然是不合适的,可用多项式拟合。对于给定的一组数据寻求次数不超过m(m<<N)的多项式,来拟合所给定的数据,与线性拟合类似,使偏差的平方和为最小2024/12/23jkhh10由于Q可以看作是关于(j=0,1,2,…,m)的多元函数,故上述拟合多项式的构造问题可归结为多元函数的极值问题。令得
即有
2024/12/23jkhh11这是关于系数
的线性方程组,通常称为正规方程组。可以证明,正规方程组有惟一解。
例2设某实验数据如下:123456012345521123用最小二乘法求一个多项式拟合这组数据(3.2)2024/12/23jkhh12解:将已给数据点描在坐标系中,可以看出这些点接近一条抛物线,因此设所求的多项式为
由法方程组(5.2),经计算得
N=6,其法方程组为
解之得
所求的多项式为
2024/12/23jkhh13(3)可化为线性拟合的非线性拟合有些非线性拟合曲线可以通过适当的变量替换转化为线性曲线,从而用线性拟合进行处理,对于一个实际的曲线拟合问题,一般先按观测值在直角坐标平面上描出散点图,看一看散点的分布同哪类曲线图形接近,然后选用相接近的曲线拟合方程。再通过适当的变量替换转化为线性拟合问题,按线性拟合解出后再还原为原变量所表示的曲线拟合方程。表3-4列举了几类经适当变换后化为线性拟合求解的曲线拟合方程及变换关系
2024/12/23jkhh14曲线拟合方程变换关系变换后线性拟合方程2024/12/23jkhh15几种常见的数据拟合情况。图(a)表示数据接近于直线,故宜采用线性函数拟合;图(b)数据分布接近于抛物线。可采拟合;二次多项式拟合;(a)(b)2024/12/23jkhh16图(c)的数据分布特点是开始曲线上升较快随后逐渐变慢,宜采用双曲线型函数或指数型函数图(d)的数据分布特点是开始曲线下降快,随后逐渐变慢,宜采用或或等数据拟合。(c)(d)2024/12/23jkhh17例3设某实验数据如下:
12345600.511.522.52.01.00.90.60.40.3用最小二乘法求拟合曲线解:将已给数据点描在坐标系中下图所示,可以看出这些点接近指数曲线,因而可取指数函数作为拟合函数.对函数两边取对数得.令得则就得到线性模型2024/12/23jkhh18则正规方程组为
其中
将以上数据代入上式正规方程组,得解得
由得,由得于是得到拟合指数函数为2024/12/23jkhh192.2超定方程组的最小二乘解设线性方程组Ax=b中,,b是m维已知向量,x是n维解向量,当m>n,即方程组中方程的个数多于未知量的个数时,称此方程组为超定方程组。一般来说,超定方程组无解(此时为矛盾方程组),这时需要寻求方程组的一个“最近似”的解.记,称使,即最小的解为方程组Ax=b的最小二乘解。2024/12/23jkhh20定理6是Ax=b的最小二乘解的充分必要条件为是的解.证明:充分性
若存在n维向量,使任取一n维向量,令,则,且
所以是Ax=b的最小二乘解。
2024/12/23jkhh21必要性:r的第i个分量为,,记由多元函数求极值的必要条件,可得即由线性代数知识知,上式写成矩阵形式为它是关于的线性方程组,也就是我们所说的正规方程组或法方程组。可以证明如果A是列满秩的,则上述方程组存在惟一解2024/12/23jkhh22例4求超定方程组
的最小二乘解,并求误差平方和。解:方程组写成矩阵形式为正规方程组为2024/12/23jkhh23即
解得此时误差平方和为2024/12/23jkhh24我们已经讨论了最小二乘意义下的曲线拟合问题,由于方程比较简单,实际中应用广泛,特别是因为任何连续函数至少在一个较小的邻域内可以用多项式任意逼近,因此用多项式作数据拟合,有它的特殊重要性。从而在许多实际问题中,不论具体函数关系如何,都可用多
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 涉及打胎的孕妇离婚协议书(2025年版)6篇
- 二零二五版居民内地与香港离婚登记手续全程辅导合同3篇
- 2025年度个人养老贷款保证担保合同样本4篇
- 二零二五美容院美容师形象设计与推广服务合同4篇
- 2025年度个人沙石加工及销售一体化合同4篇
- 2025年度虚拟现实内容制作与版权保护合同3篇
- 2025年度露营装备租赁与售后服务合同范本3篇
- 二零二五年度高端U盘定制销售合同范本2篇
- 二零二五版模具制造设备租赁及质量控制协议4篇
- 郑州电力职业技术学院《色彩学》2023-2024学年第一学期期末试卷
- 垃圾处理厂工程施工组织设计
- 天疱疮患者护理
- 湖南省长沙市青竹湖湘一外国语学校2021-2022学年八年级下学期期中语文试题
- 2024年股权代持协议经典版(3篇)
- 四川省成都市青羊区石室联中学2024年八年级下册物理期末学业水平测试试题含解析
- 门诊导医年终工作总结
- 新生物医药产业中的人工智能药物设计研究与应用
- 损失补偿申请书范文
- 压力与浮力的原理解析
- 铁路损伤图谱PDF
- 装修家庭风水学入门基础
评论
0/150
提交评论