湖北省襄州一中枣阳一中等四校重点中学2025届高考考前提分数学仿真卷含解析_第1页
湖北省襄州一中枣阳一中等四校重点中学2025届高考考前提分数学仿真卷含解析_第2页
湖北省襄州一中枣阳一中等四校重点中学2025届高考考前提分数学仿真卷含解析_第3页
湖北省襄州一中枣阳一中等四校重点中学2025届高考考前提分数学仿真卷含解析_第4页
湖北省襄州一中枣阳一中等四校重点中学2025届高考考前提分数学仿真卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省襄州一中枣阳一中等四校重点中学2025届高考考前提分数学仿真卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,则()A. B. C. D.2.已知等边△ABC内接于圆:x2+y2=1,且P是圆τ上一点,则的最大值是()A. B.1 C. D.23.将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有()A.14种 B.15种 C.16种 D.18种4.已知实数,满足,则的最大值等于()A.2 B. C.4 D.85.在棱长为2的正方体ABCD−A1B1C1D1中,P为A1D1的中点,若三棱锥P−ABC的四个顶点都在球O的球面上,则球O的表面积为()A.12 B. C. D.106.若,则的虚部是A.3 B. C. D.7.已知函数是上的偶函数,且当时,函数是单调递减函数,则,,的大小关系是()A. B.C. D.8.马林●梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p﹣1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡献,将形如2P﹣1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是()A.3 B.4 C.5 D.69.一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为()A. B. C. D.10.某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为().A. B. C.1 D.11.“”是“函数(为常数)为幂函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件12.设,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设P为有公共焦点的椭圆与双曲线的一个交点,且,椭圆的离心率为,双曲线的离心率为,若,则______________.14.在平面直角坐标系中,双曲线的焦距为,若过右焦点且与轴垂直的直线与两条渐近线围成的三角形面积为,则双曲线的离心率为____________.15.执行以下语句后,打印纸上打印出的结果应是:_____.16.已知满足且目标函数的最大值为7,最小值为1,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角,,的对边分别为,,,已知的面积为.(1)求;(2)若,,求的周长.18.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,.(1)求cosC;(2)若b=7,D是BC边上的点,且△ACD的面积为,求sin∠ADB.19.(12分)已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB的中点是,(1)求椭圆的方程;(2)过原点的直线l与线段AB相交(不含端点)且交椭圆于C,D两点,求四边形面积的最大值.20.(12分)[2018·石家庄一检]已知函数.(1)若,求函数的图像在点处的切线方程;(2)若函数有两个极值点,,且,求证:.21.(12分)已知正实数满足.(1)求的最小值.(2)证明:22.(10分)如图,在四边形中,,,.(1)求的长;(2)若的面积为6,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

利用指数函数和对数函数的单调性,将数据和做对比,即可判断.【详解】由于,,故.故选:B.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.2、D【解析】

如图所示建立直角坐标系,设,则,计算得到答案.【详解】如图所示建立直角坐标系,则,,,设,则.当,即时等号成立.故选:.【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.3、D【解析】

采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起【详解】首先将黑球和白球排列好,再插入红球.情况1:黑球和白球按照黑白相间排列(“黑白黑白黑白”或“白黑白黑白黑”),此时将红球插入6个球组成的7个空中即可,因此共有2×7=14种;情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种.综上所述,共有14+4=18种.故选:D【点睛】本题考查排列组合公式的具体应用,插空法的应用,属于基础题4、D【解析】

画出可行域,计算出原点到可行域上的点的最大距离,由此求得的最大值.【详解】画出可行域如下图所示,其中,由于,,所以,所以原点到可行域上的点的最大距离为.所以的最大值为.故选:D【点睛】本小题主要考查根据可行域求非线性目标函数的最值,考查数形结合的数学思想方法,属于基础题.5、C【解析】

取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,此直三棱柱和三棱锥P−ABC有相同的外接球,求出等腰三角形的外接圆半径,然后利用勾股定理可求出外接球的半径【详解】如图,取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,所以该直三棱柱的六个顶点都在球O的球面上,的外接圆直径为,球O的半径R满足,所以球O的表面积S=4πR2=,故选:C.【点睛】此题考查三棱锥的外接球半径与棱长的关系,及球的表面积公式,解题时要注意审题,注意空间思维能力的培养,属于中档题.6、B【解析】

因为,所以的虚部是.故选B.7、D【解析】

利用对数函数的单调性可得,再根据的单调性和奇偶性可得正确的选项.【详解】因为,,故.又,故.因为当时,函数是单调递减函数,所以.因为为偶函数,故,所以.故选:D.【点睛】本题考查抽象函数的奇偶性、单调性以及对数函数的单调性在大小比较中的应用,比较大小时注意选择合适的中间数来传递不等关系,本题属于中档题.8、C【解析】

模拟程序的运行即可求出答案.【详解】解:模拟程序的运行,可得:p=1,S=1,输出S的值为1,满足条件p≤7,执行循环体,p=3,S=7,输出S的值为7,满足条件p≤7,执行循环体,p=5,S=31,输出S的值为31,满足条件p≤7,执行循环体,p=7,S=127,输出S的值为127,满足条件p≤7,执行循环体,p=9,S=511,输出S的值为511,此时,不满足条件p≤7,退出循环,结束,故若执行如图所示的程序框图,则输出的梅森素数的个数是5,故选:C.【点睛】本题主要考查程序框图,属于基础题.9、B【解析】

根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心.【详解】如图所示:因为正四棱锥底边边长为,高为,所以,到的距离为,同理到的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【点睛】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.10、B【解析】

首先由三视图还原几何体,进一步求出几何体的棱长.【详解】解:根据三视图还原几何体如图所示,所以,该四棱锥体的最长的棱长为.故选:B.【点睛】本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题.11、A【解析】

根据幂函数定义,求得的值,结合充分条件与必要条件的概念即可判断.【详解】∵当函数为幂函数时,,解得或,∴“”是“函数为幂函数”的充分不必要条件.故选:A.【点睛】本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.12、D【解析】

由不等式的性质及换底公式即可得解.【详解】解:因为,,则,且,所以,,又,即,则,即,故选:D.【点睛】本题考查了不等式的性质及换底公式,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设根据椭圆的几何性质可得,根据双曲线的几何性质可得,,即故答案为14、【解析】

利用即可建立关于的方程.【详解】设双曲线右焦点为,过右焦点且与轴垂直的直线与两条渐近线分别交于两点,则,,由已知,,即,所以,离心率.故答案为:【点睛】本题考查求双曲线的离心率,做此类题的关键是建立的方程或不等式,是一道容易题.15、1【解析】

根据程序框图直接计算得到答案.【详解】程序在运行过程中各变量的取值如下所示:是否继续循环ix循环前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循环,所以打印纸上打印出的结果应是:1故答案为:1.【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.16、-2【解析】

先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大最小值时所在的顶点即可.【详解】由题意得:目标函数在点B取得最大值为7,在点A处取得最小值为1,∴,,∴直线AB的方程是:,∴则,故答案为.【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值的方法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)根据三角形面积公式和正弦定理可得答案;(2)根据两角余弦公式可得,即可求出,再根据正弦定理可得,根据余弦定理即可求出,问题得以解决.【详解】(1)由三角形的面积公式可得,,由正弦定理可得,,;(2),,,,,则由,可得:,由,可得:,,可得:,经检验符合题意,三角形的周长.(实际上可解得,符合三边关系).【点睛】本题考查了三角形的面积公式、两角和的余弦公式、诱导公式,考查正弦定理,余弦定理在解三角形中的综合应用,考查了学生的运算能力,考查了转化思想,属于中档题.18、(1);(2).【解析】

(1)根据诱导公式和二倍角公式,将已知等式化为角关系式,求出,再由二倍角余弦公式,即可求解;(2)在中,根据面积公式求出长,根据余弦定理求出,由正弦定理求出,即可求出结论.【详解】(1),,;(2)在中,由(1)得,,由余弦定理得,,在中,,.【点睛】本题考查三角恒等变换求值、面积公式、余弦定理、正弦定理解三角形,考查计算求解能力,属于中档题.19、(1)(2)【解析】

(1)由直线可得椭圆右焦点的坐标为,由中点可得,且由斜率公式可得,由点在椭圆上,则,二者作差,进而代入整理可得,即可求解;(2)设直线,点到直线的距离为,则四边形的面积为,将代入椭圆方程,再利用弦长公式求得,利用点到直线距离求得,根据直线l与线段AB(不含端点)相交,可得,即,进而整理换元,由二次函数性质求解最值即可.【详解】(1)直线与x轴交于点,所以椭圆右焦点的坐标为,故,因为线段AB的中点是,设,则,且,又,作差可得,则,得又,所以,因此椭圆的方程为.(2)由(1)联立,解得或,不妨令,易知直线l的斜率存在,设直线,代入,得,解得或,设,则,则,因为到直线的距离分别是,由于直线l与线段AB(不含端点)相交,所以,即,所以,四边形的面积,令,,则,所以,当,即时,,因此四边形面积的最大值为.【点睛】本题考查求椭圆的标准方程,考查椭圆中的四边形面积问题,考查直线与椭圆的位置关系的应用,考查运算能力.20、(1)(2)见解析【解析】试题分析:(1)分别求得和,由点斜式可得切线方程;(2)由已知条件可得有两个相异实根,,进而再求导可得,结合函数的单调性可得,从而得证.试题解析:(1)由已知条件,,当时,,,当时,,所以所求切线方程为(2)由已知条件可得有两个相异实根,,令,则,1)若,则,单调递增,不可能有两根;2)若,令得,可知在上单调递增,在上单调递减,令解得,由有,由有,从而时函数有两个极值点,当变化时,,的变化情况如下表单调递减单调递增单调递减因为,所以,在区间上单调递增,.另解:由已知可得,则,令,则,可知函数在单调递增,在单调递减,若有两个根,则可得,当时,,所以在区间上单调递增,所以.21、(1);(2)见解析【解析】

(1)利用乘“1”法,结合基本不等式求得结果

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论