南京师范大学中北学院《智能信息处理》2023-2024学年第一学期期末试卷_第1页
南京师范大学中北学院《智能信息处理》2023-2024学年第一学期期末试卷_第2页
南京师范大学中北学院《智能信息处理》2023-2024学年第一学期期末试卷_第3页
南京师范大学中北学院《智能信息处理》2023-2024学年第一学期期末试卷_第4页
南京师范大学中北学院《智能信息处理》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页南京师范大学中北学院

《智能信息处理》2023-2024学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共25个小题,每小题1分,共25分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、人工智能中的无人驾驶技术面临着众多技术和法律挑战。假设我们在讨论无人驾驶汽车的责任归属问题,以下关于无人驾驶责任的说法,哪一项是不正确的?()A.事故责任的判定应该综合考虑多种因素B.完全由无人驾驶汽车的制造商承担责任C.法律法规需要随着技术发展不断完善D.乘客在某些情况下也可能承担一定责任2、在人工智能的图像生成领域,例如生成逼真的艺术作品或虚拟场景,以下哪种技术的发展起到了关键作用?()A.生成对抗网络B.自编码器C.变分自编码器D.玻尔兹曼机3、在人工智能的图像分割任务中,需要将图像划分成不同的区域。假设要对医学影像中的病变区域进行分割,以下关于图像分割技术的描述,正确的是:()A.传统的图像分割方法在处理复杂的医学影像时效果总是优于深度学习方法B.深度学习中的全卷积神经网络(FCN)在医学图像分割中能够自动学习特征,具有很大的潜力C.图像分割的结果只取决于所使用的算法,与图像的质量和分辨率无关D.图像分割技术在医学领域的应用已经非常成熟,不需要进一步的研究和改进4、人工智能中的“胶囊网络(CapsuleNetwork)”的主要优势是?()A.对姿态和变形的鲁棒性B.减少参数数量C.提高训练速度D.增强可解释性5、在人工智能的异常检测任务中,例如检测网络中的异常流量或金融交易中的欺诈行为。假设正常数据的模式较为复杂,而异常数据相对较少且具有多样性。以下哪种方法在这种情况下更适合进行异常检测?()A.基于统计的方法,设定阈值判断异常B.无监督学习方法,自动发现异常模式C.监督学习方法,使用有标注的异常数据进行训练D.人工检查所有数据,识别异常6、强化学习是人工智能中的一个重要领域,常用于训练智能体在环境中做出最优决策。假设一个机器人需要在一个充满障碍物的房间里找到通往目标位置的路径,同时避免碰撞。在这种情况下,以下关于强化学习的说法,哪一项是正确的?()A.智能体通过随机尝试不同的动作来学习最优策略B.奖励函数的设计对学习效果没有太大影响C.强化学习不需要考虑环境的动态变化D.一旦训练完成,智能体在新的环境中无需重新学习就能表现良好7、人工智能在智能推荐系统中发挥着重要作用。例如,电商平台通过分析用户的购买历史和浏览行为为用户推荐商品。以下关于智能推荐系统的描述,哪一项是不正确的?()A.推荐系统可以基于用户的协同过滤进行推荐B.推荐系统只考虑用户的近期行为,忽略历史行为C.推荐系统可以结合内容过滤和协同过滤提高推荐效果D.推荐系统需要不断更新和优化以适应用户兴趣的变化8、当利用人工智能进行药物研发,例如预测药物分子的活性和副作用,以下哪种技术和数据可能是重要的支撑?()A.化学信息学和分子模拟B.生物医学数据和机器学习C.药物临床试验数据和统计分析D.以上都是9、人工智能中的语音识别技术能够将人类的语音转换为文字。以下关于语音识别的叙述,不准确的是()A.语音识别系统通常包括声学模型、语言模型和解码器等部分B.语音识别的准确率受到语音质量、口音和背景噪声等因素的影响C.语音识别技术已经非常完美,能够准确识别各种口音和语速的语音D.深度学习的应用显著提高了语音识别的性能和准确率10、在人工智能的智能推荐系统中,假设要为用户提供个性化的推荐服务,以下关于推荐算法的描述,正确的是:()A.协同过滤算法只考虑用户的历史行为,不考虑物品的特征B.基于内容的推荐算法能够根据物品的属性为用户推荐相似的物品C.混合推荐算法结合了多种推荐方法的优点,能够提供更准确的推荐D.以上推荐算法都存在一定的局限性,无法满足所有用户的需求11、当利用人工智能进行文本摘要生成,从长篇文章中提取关键信息并形成简洁的摘要,以下哪种策略和算法可能是有效的?()A.基于抽取的方法B.基于生成的方法C.融合抽取和生成的方法D.以上都是12、人工智能在图像识别领域取得了显著的成果。假设要开发一个能够识别水果种类的图像识别系统,需要考虑多种因素。以下关于图像数据预处理的步骤,哪一项是最关键的?()A.对图像进行裁剪和旋转,以统一图像的大小和方向B.将图像转换为灰度图像,减少数据量C.对图像进行增强和去噪处理,提高图像质量D.随机打乱图像的顺序,增加数据的多样性13、人工智能是当前科技领域的热门话题,其应用涵盖了众多领域。以下关于人工智能的定义,不准确的是()A.人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学B.人工智能是指让计算机像人类一样思考和行动,能够自主地解决各种复杂问题C.人工智能仅仅是通过大量的数据训练来实现对特定任务的预测和决策,不涉及对智能本质的探索D.人工智能旨在创造出能够感知环境、学习知识、进行推理和决策,并能够与人类进行交互的智能体14、在人工智能的图像识别任务中,卷积神经网络(CNN)被广泛应用。假设要设计一个用于识别手写数字的卷积神经网络,以下哪个因素对于提高识别准确率至关重要?()A.增加卷积层的数量B.减少池化层的大小C.选择合适的激活函数D.增加全连接层的神经元数量15、人工智能在智能客服领域的应用越来越广泛。假设一个企业要部署智能客服系统。以下关于智能客服的描述,哪一项是不正确的?()A.能够快速回答常见问题,提高客户服务的响应速度B.可以通过不断学习和优化,提高回答的准确性和满意度C.智能客服能够完全理解客户的复杂情感和意图,提供个性化的服务D.与人工客服相结合,可以提供更优质的客户服务体验16、人工智能在医疗领域有着广泛的应用前景,例如疾病诊断、药物研发和医疗影像分析等。以下关于人工智能在医疗领域应用的描述,不正确的是()A.人工智能可以通过分析大量的医疗数据,辅助医生进行疾病的早期诊断和预测B.在药物研发中,人工智能可以加速药物筛选和优化药物配方的过程C.虽然人工智能在医疗领域有诸多应用,但它不能替代医生的专业判断和临床经验D.人工智能在医疗领域的应用已经非常成熟,不存在任何风险和挑战17、人工智能在智能推荐系统中的应用越来越普遍。假设要为一个电商平台开发推荐系统,以下关于考虑用户兴趣动态变化的方法,哪一项是最重要的?()A.定期重新训练模型,以反映用户兴趣的最新变化B.只根据用户的历史购买记录进行推荐,不考虑近期行为C.为用户推荐始终不变的热门商品,不考虑其个人兴趣D.随机推荐商品,期望能够满足用户的动态兴趣18、在人工智能的医疗影像诊断中,深度学习模型可以辅助医生发现病变。假设我们要利用深度学习模型诊断肺部CT影像中的结节,以下关于模型训练的说法,哪一项是正确的?()A.可以使用少量标注数据获得准确的诊断结果B.模型的泛化能力对于不同医院的数据不重要C.数据增强技术可以提高模型的鲁棒性D.不需要对模型进行验证和评估19、在人工智能的伦理原则中,“公平性”是一个重要的考量因素。假设一个人工智能招聘系统对不同性别、种族的候选人给出了不同的评价结果。以下关于解决这种公平性问题的方法,哪一项是不正确的?()A.对数据进行预处理,消除可能导致偏差的因素B.定期审查和更新模型,以确保其公平性C.故意引入偏差,以平衡不同群体之间的差异D.建立公平性评估指标,对模型进行监测和改进20、在人工智能的图像语义分割任务中,需要将图像中的每个像素分配到不同的类别,例如将一幅街景图像中的道路、建筑物、车辆等区分开来。假设图像中的物体边界模糊、类别多样,以下哪种方法能够提高语义分割的精度?()A.使用更高分辨率的图像进行训练B.采用简单的分割算法,降低计算复杂度C.忽略物体边界的像素,只关注主要区域D.不进行任何预处理,直接对原始图像进行分割21、人工智能在自动驾驶领域的应用面临着诸多技术和法律挑战。假设一辆自动驾驶汽车在行驶过程中需要做出决策,如避让行人或其他车辆。以下哪种方法在确保决策的安全性和合法性方面最为关键?()A.基于概率的决策模型B.遵循预设的规则和策略C.模仿人类驾驶员的决策方式D.实时收集大量的交通数据进行分析22、人工智能中的生成对抗网络(GAN)具有强大的生成能力。假设使用GAN生成逼真的图像,以下关于GAN的描述,哪一项是不正确的?()A.GAN由生成器和判别器组成,两者通过对抗训练不断优化B.GAN可以学习到数据的分布特征,从而生成新的、与真实数据相似的样本C.GAN生成的图像在质量和真实性上可以与真实拍摄的图像完全无法区分D.调整GAN的网络结构和训练参数可以影响生成图像的效果23、人工智能中的多模态学习旨在融合多种不同类型的数据,如图像、文本、音频等。假设要开发一个能够同时理解视频中的图像内容和音频解说的系统,以下哪种多模态学习方法在整合和理解这些异构数据方面表现更为出色?()A.早期融合B.晚期融合C.注意力机制D.混合融合24、人工智能中的机器翻译是一项具有挑战性的任务。假设我们要将一段中文文本翻译成英文,以下关于机器翻译的挑战,哪一项是不正确的?()A.词汇的多义性B.语法结构的差异C.文化背景的不同D.机器翻译的质量已经超越了人类翻译25、人工智能中的计算机视觉技术能够让计算机理解和分析图像和视频内容。以下关于计算机视觉的描述,不准确的是()A.目标检测、图像分类和语义分割是计算机视觉中的常见任务B.计算机视觉技术可以应用于自动驾驶、安防监控和工业检测等领域C.计算机视觉系统的性能完全取决于所使用的硬件设备,算法的优化作用不大D.深度学习算法的出现极大地推动了计算机视觉技术的发展二、简答题(本大题共4个小题,共20分)1、(本题5分)谈谈人工智能在天文观测中的作用。2、(本题5分)谈谈人工智能在智能项目资源调度中的应用。3、(本题5分)简述人工智能在成本控制中的应用。4、(本题5分)说明人工智能在社会创新和可持续发展解决方案中的潜力。三、案例分析题(本大题共5个小题,共25分)1、(本题5分)研究一个使用人工智能的智能宠物健康监测系统,分析其如何通过传感器数据评估宠物健康状况。2、(本题5分)研究一个使用人工智能的智能戏曲唱腔分析系统,分析其如何解析唱腔特点和流派风格。3、(本题5分)考察一个基于人工智能的智能音乐人才评估与发展系统,讨论其如何评估音乐人才的潜力和发展方向。4、(本题5分)以某智能语音助手为例,探讨人工智能在自然语言处理方面的应用,包括语音识别和语义理解。5、(本题5分)分析一个基于人工智能的电子竞技比赛战术分析系统,讨论其分析深度和实用性。四、操作题(本大题共3个小题,共30分)1、(本题10分)利用深度学习框架TensorFlow或PyTorch,构建一个简单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论