版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DNV
WHENTRUSTMATTERS
WINDSPEEDANDREAR
GLASSBREAKAGEON
BIFACIALPVMODULES
MOUNTEDONTRACKERS
Correlationbetweenmid-levelwindspeedandrearglassbreakagesonnon-largeformatbifacialPVmodulesontrackersinasolarfarm
Authors:
DarrylWang
AndiHermawanEvanWoolard
WHITEPAPER
WindspeedandrearglassbreakageonbifacialPVmodulesmountedontrackers
CONTENTS
Abstract3
1.Introduction4
2.PVsystemsdesign5
3.Method5
4.Resultsanddiscussions6
5.Summary9
Acknowledgement9
References9
-2-
WindspeedandrearglassbreakageonbifacialPVmodulesmountedontrackers
ABSTRACT
Totheauthors’knowledge,thisisthefirstreportwithonsite-recordedevidencessuggestingthat
not-highbutmid-levelwindspeedisamajorinfluenceonoratriggerforlarge-scale(>15%)rearglassbreakagesonbifacialPVmodulesmountedontrackersinasolarfarmlocatedintheAsiaPacificregion.
Timeandspatialcorrelationswerefoundbetweenmid-levelwindspeedrecordsandrearglassbreakagesonnon-largeformatglass/glassbifacialPVmodulesmountedonsingle
portrait(1P)single-axistrackers.Fortimecorrelation,
intra-daymid-levelwindspeedclusterswerefoundto
consistentlyprecedemajoronsiteO&Meventsthatincludes
orcanberelatedtoglassbreakages.Goodspatialcorrelationwasalsoobserved,wheretheareaswithhighestglass
breakageconcentrationswerefoundclosetoaweather
stationthataccountsfor~75%ofallthemid-levelwindspeedrecords.Themaximumwindspeedis,however,wellbelow
thresholdsthatcanexertwindloadexceedingthetypical
moduledesignwindload,representinganengineering
missinglinkthatisconsistentwithotherworks.Theglass
crackpatternsfoundonsitearealsodiscussed.ItishopedthisworkcanhelpthePVR&Dcommunitytosharpenthefocus
towardsfindingthemissinglink.
-3-
WindspeedandrearglassbreakageonbifacialPVmodulesmountedontrackers
-4-
1.INTRODUCTION
GlassbreakageinbifacialPVmodulesinstalledinsingle-axistrackers-basedsolarfarmshasbeen
increasinglyreportedinrecentyears[1]-[6].Whileearlyattentionontrackermodulefailureswason
2Ptrackersduetotorsionalgalloping[1],since2020thereisagrowingbodyofreportsforrearglass
breakagesafflictingsolarfarmsinstalledwith1Ptrackerdesignsandlargeformat(≥2.5m2[4])bifacialglass/glassmodulessupportedonitslongedgesbyshortmounts[2]-[4](Figure1showsanexample).
Importantly,suchbreakagesoccurintheabsenceofhigh
windspeed(let'scallthis"thresholdwindspeed")eventsthatcouldexplainthemodulebreakagebasedonthemodule
manufacturer'sdesignwindloadonapprovedmodule
mountingdesignwithshort(usually~400mm)mountsonsuchtrackerdesigns[2]-[6].Thisrepresentsanexistingengineeringknowledgegapofanominousfailuremodethat,giventhattrackersystemsarealreadyamainstreamPVdesign[2],couldhavewideimplicationsintheglobalsolardecarbonizationdriveifleftunresolved.Whilemanyhypotheticalexplanationswereoffered[2]-[6],therehasbeenlittleclearevidencetofurthersteertheattention
towardsanyofthehypotheses.
Inthiswork,wereportanencounterwith>15%ofbifacialPVmodulessmallerthanlargemoduleformatson1Ptrackersafflictedwithrearglassbreakagesacrossthesolarfarm.
Moreover,mid-levelwindspeedlevelswerealsofoundto
correlatewellwithglassbreakagesbothspatiallywithinthesolarfarmandchronologicallywhencomparedtomajor
infieldO&Mevents(includeglassbreakages),whichsuggestthatglassbreakageswereinfluencedbymid-levelwind
speedeventsthatarewellunderthethresholdwindspeeds.Thisisthefirstreportwithsuchcorrelationbetweenonsiterecords.
Allfiguresinthispublicationarerepresentativeillustrationsoftheactualencounter,andsomedetailsareintentionallykeptambiguouswithwideranges,buttheoverallpresentation
herecanstillconveyasimilarstoryoftheactualencounter.
FIGURE1
Atypical1Psingle-axistrackerdesignwithframedbifacialdouble-glass144half-cut-cellsPVmodules.Imageistakenfrom[7].
WindspeedandrearglassbreakageonbifacialPVmodulesmountedontrackers
-5-
2.PVSYSTEMSDESIGN
MODULE
Reputablebrand,
144half-cutc-Sicells
bifacial,2mmglassfront
andback,3junctionboxes,
30-35mmframes.
SOLARFARM
10-50MWp,2-7yearsold,locatedinAPAC.
Thesolarfarmdetailsareasfollows:
MODULEAREA
MOUNTINGSTRUCTURE
Between2.0-2.3m2
IPsingle-axistracker,
shortmountattached
tothemid-sectionof
modulelong-sideframes.
Sitelayoutisapproximatelyrectangular,withtwometeorologicalstationseachcontainingananemometer(windspeedsensor;~3mhigh)recordingperminutewindspeeddatasinceCOD.
3.METHOD
Twodocuments,compiledbythesolarfarmownerandrecordedontwo
differentdates,countingmoduleswithglasscracksandtheirlocationsin
thesolarfarmwerereviewed.ThelatestdocumentisdatedwithinQ2-Q32023,whiletheearlierdocumentisdatedwithin12monthsoftheformer.MonthlyO&MrecordswerereviewedsincetheplantCOD.Meteorologicaldata,includingwindspeedatperminutebasis,fromthetwoweather
stationsinthesolarfarmwerealsoreviewed.Acomprehensiveassessmentwasconductedacrossthevariousdata.Asitevisitwasalsodonetoassessthemoduleswithglasscracks.Assessmentswerealsodoneonmodule
productionbatchesandglasssuppliers/batchesbutnoclearcorrelationtotheglassbreakageswereuncovered.Thesubsequentfocusisoncrackpatternsandwindspeeddata.
WindspeedandrearglassbreakageonbifacialPVmodulesmountedontrackers
-6-
4.RESULTSANDDISCUSSIONS
A.Crackpatterns
Fromonsiteinspections,glasscrackswereonlyfoundon
therearglassofthebifacialmodules.Thecrackpatternsaresimilarthoseinheat-strengthenedglassesshowninFigure2part(b).Thisisconsistentwiththeheat-strengthenedglassesusedinthemodulesasshowninthemoduledatasheet.
AnnealedHeat-strengthenedFullytempered
FIGURE2
Crackpatternsforannealed,heat-strengthenedandfullytemperedglasses[8]
FIGURE3
Typicalcrackpatternsfoundintherearglassesofthecrackedmodules.
Theredlinesarecrackpatternsthatmostlyruninthedirectionofthelong
sideframe,whiletheorangelinesarecrackpatternsthatrunsclosetothe
short-sideframes,withsomeeventuallyturntowardsthecenterofthemodule.
FRONTGLASS
ENCAPSULANT
2
3
REARGLASS
1
4
FIGURE4
Compressive(yellowarrows)andtensilestresses(redarrows)exertedoneachlayerofthelaminateinalaminatebow.Attheglass/encapsulantinterfaces
(3&4),thereareinterfacialcounter-forces,whilethecompressiveandtensilestressesattheair-sidesurfaces(1&2)arefree-standing.
Mostoftherearglasscrackswerealsofoundtoruninthe
directionparalleltothemodulelong-sideandendinginto
oneofthe3junctionboxes(Figure3).Thelong-sidecrack
routeandrearglasscracksisconsistentwithanonsite
observationthatmostofthemoduleshavemildbutvisuallyapparentdownwardbowinginthecenteralongthedirectionoftheshortside(notethattrackermountsareonmid-
sectionsofthelongsidemoduleframes).ThesecrackroutesinFigure3areconsistentwiththepresenceofdrillholesintherearglassatthe3junctionboxlocationsthatcanactasstressconcentratorspots,thepropensityfortherearglass
(vsfrontglass)thatisundertensilestresstobreakfirstwhenthemodulelaminateisinthedownwardbowingstate
(Figure4),andtheexpectationthatglasscrackswouldpropagateinthemodulelongsidedirectionwhenthebowingisalongitsshortside(Figure4).
Whilethecrackpatternscanbeexplainedbymodulebowanddrillholesinnon-temperedglass,itisnotconclusivethattheseareenoughtoactasthetriggersoftheglass
breakages.
WindspeedandrearglassbreakageonbifacialPVmodulesmountedontrackers
-7-
B.WindspeedrecordsvsO&Mrecords
1
2
FIGURE5
Arepresentativerectangularsketchofthesolarfarmareawitha
representativespatialheatmap(inblue)ofcrackedmodulesacrossthesite.Theyellowsquaresrepresentthetwoonsitemeteorologicalstations1and2(let’scallthem‘ST1’and‘ST2’).
Shareofwindspeedrecords>10m/s
80%
70%
60%
50%
40%
30%
20%
10%
0%
ST1ST2
FIGURE6
Shareofwindspeedrecordcumulativecountsexceeding10m/sinthetwometeorologiclstationsinFigure5sinceCOD.
Fromdesktopanalysisofthelatest(inQ2-Q32023)modulecrackcount,thebreakagecountis>15%ofallmodules.
Figure5showsthesolarfarmsitewithaspatialheatmapofthebreakagesandlocationoftwometeorologicalstations
(ST1)and(ST2),eachwithananemometer.Thisheatmap
showsthatwhiletheglassbreakageisdistributedoverthe
site,thereareselectedareaswithhigherconcentration
(especiallyrightside).Theearliermodulecrackcounthas
10-15%breakagerateandshowsaspatialdistributionsimilarasFigure5butislessdense.
Fromtheper-minutewindspeedrecordssinceCOD,a
cumulativecountofmid-levelwindspeedlevels(>10m/s)(Figures6and7)showsthat(1)themid-levelwindspeed
countismuchlessthan0.01%oftotal,whichappearsto
showmid-levelwindspeedsarenotcommonon-site,(2)
ST2accountsfor~3xmorecountsthanST1(Figure6)whichappearstocorrelatewellspatiallywiththeglassbreakageheatmapinFigure5.
Itisalsonotedthatthemaximumwindspeedisunder
15m/s(Figure7).Basedoninternalcalculations,itis
~2.5xlowerthanthethresholdwindspeedneededtoexert
1600Padesignwindloadonthemodule/trackershortmountdesign,basedonthemodulemanufacturer’sinstallation
manual.Thisisconsistentwithfindingselsewhereofbifacialmodulecrackingintheabsenceofnotablewindspeed
events[2]-[6].
Figure7showsatimeplotofthemid-levelwindspeed
recordssinceCOD,whichrevealsthatmid-levelwindeventsoccuronveryfewdays,withmid-levelwindcluster(≥3countsaday)daysoccurringonlyonafewselectdays(veryrare).
Interestingly,fromthemonthlyO&Mrecordsandother
documentations,wefoundfourO&Mactivities(yellow
overlaysinFigure7),eitherdirectlyorlikelyrelatedtomoduleglassbreakages,thatappearstobeconsistentlyprecededbytherarelyoccurringaforementionedmid-levelwindcluster
days(seenumbersatoptheyellowoverlaysinFigure7).
1.Modulerearglasscracks,followedbyrepeatedinspections(overmultipleconsecutivemonths)
2.Insulationresistance(Riso*)issuesfrominverters
3.Moduleglassbreakagecountsdocumentation(earlier)
4.Moduleglassbreakagecountsdocumentation(latest)
*RisoissuesininverterscanbecausedbymorningdewselectricallyconnectingtheinternalPVmodulecircuitrytogroundthroughglasscracks.
2
1
4
3
Windspeed[m/s]
1413.5 1312.5 1211.5 1110.5 109.59
ST1ST2Days[A.U.]
FIGURE7
Mid-levelwindspeed(>10m/s)recordsmeasuredintheonsitemeteorologicalstations1(ST1)and2(ST2)fromFigure5;theyellowboxoverlaysshowwhenandhowlongarethefourmajorO&Mevents.Thex-axisfullrangecanbeupto7years.
WindspeedandrearglassbreakageonbifacialPVmodulesmountedontrackers
-8-
Alltheabovewindspeedandglasscrackobservations
showthatthemoduleglassbreakagescorrelatewellboth
spatiallyandtemporallywithmid-levelwindspeedevents,
andsuggestthatthesemid-levelwindspeedeventseither
haveamajorinfluenceoristhetriggerforthemodule
glassbreakages.Moreover,withthemaximumwindspeed
recordedbeingmuchlowerthanthethresholdwindspeedneededtoexceedthemoduledesignwindload,theexistingwind-loadengineeringdesignunderstandingof1Psingle-
axistrackers(includingwithshortmounts)maybeinsufficienttomitigateagainstinfieldmodulefailuresmodes[2]-[6],
whichrepresentsamissinglink.Thisreportalsoshows
bifacialglassbreakagescanalsohappentonon-large-formatmodules.
Severalhypotheseshavebeenraisedinpreviousworks
[2]-[6]toexplainforthisunexpectedfailureintheabsenceofhighwindspeeds.Increasedmodulesizeswithshorter
trackersupportbeamshavemadethemoduleglassesevolvefromaloadsupportedbythetrackerstoaloadbearing
componentinstead[2]-[4],makingexistingtestingregimesnolongersuitabletotestforinfieldfailuremodes.
Thefailurecouldalsobeduetoasymmetricwind-loads
inmodules-on-trackersystemspresentinfield[4]-[6],
ormultiplestresseshappeningallatonceduringinfield
operations[9],somethingwhichstaticloading(SML)testsonPVmoduleswouldnothavesufficientlycovered.Therearealsoreportsofdynamicmechanicalload(DML)tests
replicatingtheglassbreakagepatternsobservedinfield
[4]thatweremissedbySMLtests.Itishopedthisreport
canhelpthePVR&Dcommunitytofurthersteerthefocustowardsfindingthemissinglinkintheexistingengineeringunderstandingofthismatter.
WindspeedandrearglassbreakageonbifacialPVmodulesmountedontrackers
-9-
5.SUMMARY
Wereport,forthefirsttime,evidencessuggestingthat
not-highbutmid-levelwindspeedisamajorinfluenceon
oratriggerforlarge-scale(>15%)rearglassbreakageson
bifacialPVmodulesontrackersinasolarfarmlocatedintheAPACregion.Timeandspatialcorrelationsinthesolarfarmwerefoundbetweenmid-levelwindspeedrecordsandrearglassbreakagesonnon-large-formatglass/glassbifacialPV
modulesmountedonsingleportrait(1P)single-axistrackers.Themaximumwindspeedis,however,wellbelowthresholdsthatcanexertwindloadexceedingthetypicalmoduledesignwindload,representinganengineeringmissinglinkthatwerealsoreportedinotherworks.Theglasscrackpatternsfoundonsitearealsodiscussedanditscausesareexcludedasthetrigger.ItishopedthisworkcanhelpthePVR&Dcommunitytosharpenthefocustowardsfindingthemissinglink.
ACKNOWLEDGEMENT
TheauthorswouldliketoacknowledgeMichaelNiu,RachelOh,andLowZhengHuaforvaluabletechnicaldiscussions,site
inspectionandoverallprojectcontributions.
REFERENCES
[1]D.Valentín,C.Valero,M.Egusquiza,A.Presas,Failureinvestigationofasolartrackerduetowind-inducedtorsionalgalloping,EngineeringFailureAnalysis,135,106137,2022
[2]T.Weber,“Glassbreakage–agrowingphenomenoninlarge-scalePV”,inPVMagazineWebinar,20November2023
[3]C.Sillerud,“CurrentissuesinPVmodulereliabilitytesting”,in50thIEEEPhotovoltaicSpecialistConference,2023,Plenary.
[4]H.Hieslmair,“Stressconcentrators”,DNV,2023,
/article/stress-concentrators-246984
[5]D.Chang,“Modulewindloadresistance:Standardsvs.reality”,inPVMagazineWebinar,30August2021
[6]S.vanPelt,“Modulewindloadresistance:Standardsvs.reality”,inPVMagazineWebinar,30August2021[7]
/monoline-plus-solar-tracker/
[8]P.C.Louter,“Adhesivelybondedreinforcedgla
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度医院医疗废物处理设施建设合同4篇
- 2025年度个人创业贷款合同示范文本8篇
- 二零二五年度美容院美容护肤品生产股份合作合同4篇
- 二零二五版木质家具定制设计与生产加工合同3篇
- 二零二五年度电子商务平台标志设计及用户体验合同3篇
- 二零二五年度托盘租赁与供应链金融结合合同范本3篇
- 二零二五年度昌平区食堂员工激励与绩效考核合同3篇
- 2025年度汽车租赁与品牌合作推广合同范本3篇
- 二零二五年度城市绿化工程承包合同14篇
- 2025年度线上线下联动大型促销活动合作合同3篇
- 河北省沧州市五县联考2024-2025学年高一上学期期末英语试卷(含答案含含听力原文无音频)
- 急性肺栓塞抢救流程
- 《统计学-基于Python》 课件全套 第1-11章 数据与Python语言-时间序列分析和预测
- 《形象价值百万》课件
- 红色文化教育国内外研究现状范文十
- 中医基础理论-肝
- 小学外来人员出入校门登记表
- 《土地利用规划学》完整课件
- GB/T 25283-2023矿产资源综合勘查评价规范
- 《汽车衡全自动智能称重系统》设计方案
- 义务教育历史课程标准(2022年版)
评论
0/150
提交评论