湖北省宜宜昌市部分示范高中教学协作体2025届高三3月份第一次模拟考试数学试卷含解析_第1页
湖北省宜宜昌市部分示范高中教学协作体2025届高三3月份第一次模拟考试数学试卷含解析_第2页
湖北省宜宜昌市部分示范高中教学协作体2025届高三3月份第一次模拟考试数学试卷含解析_第3页
湖北省宜宜昌市部分示范高中教学协作体2025届高三3月份第一次模拟考试数学试卷含解析_第4页
湖北省宜宜昌市部分示范高中教学协作体2025届高三3月份第一次模拟考试数学试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省宜宜昌市部分示范高中教学协作体2025届高三3月份第一次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知的展开式中第项与第项的二项式系数相等,则奇数项的二项式系数和为().A. B. C. D.2.已知集合,集合,那么等于()A. B. C. D.3.《九章算术》勾股章有一“引葭赴岸”问题“今有饼池径丈,葭生其中,出水两尺,引葭赴岸,适与岸齐,问水深,葭各几何?”,其意思是:有一个直径为一丈的圆柱形水池,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐,问水有多深,该植物有多高?其中一丈等于十尺,如图若从该葭上随机取一点,则该点取自水下的概率为()A. B. C. D.4.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为()A.②③ B.②③④ C.①④ D.①②③5.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为()A. B. C. D.6.某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则()A.B.C.D.7.已知函数的图像的一条对称轴为直线,且,则的最小值为()A. B.0 C. D.8.设函数,当时,,则()A. B. C.1 D.9.曲线在点处的切线方程为,则()A. B. C.4 D.810.是虚数单位,则()A.1 B.2 C. D.11.已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是()A. B. C. D.12.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为()A.4π B.8π C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,满足,,,则向量在的夹角为______.14.函数在区间上的值域为______.15.已知数列满足:,,若对任意的正整数均有,则实数的最大值是_____.16.已知双曲线-=1(a>0,b>0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点为P,若|FP|=5,则点F到双曲线的渐近线的距离为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱中,平面,,,分别为,的中点.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.18.(12分)已知动圆恒过点,且与直线相切.(1)求圆心的轨迹的方程;(2)设是轨迹上横坐标为2的点,的平行线交轨迹于,两点,交轨迹在处的切线于点,问:是否存在实常数使,若存在,求出的值;若不存在,说明理由.19.(12分)为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校学生进行法律知识竞赛.现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在[50,100]内,并得到如下的频数分布表:分数段[50,60)[60,70)[70,80)[80,90)[90,100]人数51515123(1)将竞赛成绩在内定义为“合格”,竞赛成绩在内定义为“不合格”.请将下面的列联表补充完整,并判断是否有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?合格不合格合计高一新生12非高一新生6合计(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率.参考公式及数据:,其中.20.(12分)已知数列中,,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.(1)若数列为“数列”,求数列的前项和;(2)若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由.21.(12分)如图,四棱锥中,平面平面,若,四边形是平行四边形,且.(Ⅰ)求证:;(Ⅱ)若点在线段上,且平面,,,求二面角的余弦值.22.(10分)已知.(1)当时,求不等式的解集;(2)若,,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】因为的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式中奇数项的二项式系数和为.考点:二项式系数,二项式系数和.2、A【解析】

求出集合,然后进行并集的运算即可.【详解】∵,,∴.故选:A.【点睛】本小题主要考查一元二次不等式的解法,考查集合并集的概念和运算,属于基础题.3、C【解析】

由题意知:,,设,则,在中,列勾股方程可解得,然后由得出答案.【详解】解:由题意知:,,设,则在中,列勾股方程得:,解得所以从该葭上随机取一点,则该点取自水下的概率为故选C.【点睛】本题考查了几何概型中的长度型,属于基础题.4、C【解析】

根据直线与平面,平面与平面的位置关系进行判断即可.【详解】根据面面平行的性质以及判定定理可得,若,,则,故①正确;若,,平面可能相交,故②错误;若,,则可能平行,故③错误;由线面垂直的性质可得,④正确;故选:C【点睛】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.5、A【解析】分析:设三角形的直角边分别为1,,利用几何概型得出图钉落在小正方形内的概率即可得出结论.解析:设三角形的直角边分别为1,,则弦为2,故而大正方形的面积为4,小正方形的面积为.图钉落在黄色图形内的概率为.落在黄色图形内的图钉数大约为.故选:A.点睛:应用几何概型求概率的方法建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量.(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在数轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型.6、D【解析】

如图所示:在边长为的正方体中,四棱锥满足条件,故,得到答案.【详解】如图所示:在边长为的正方体中,四棱锥满足条件.故,,.故,故,.故选:.【点睛】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力.7、D【解析】

运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.【详解】由题意,函数为辅助角,由于函数的对称轴的方程为,且,即,解得,所以,又由,所以函数必须取得最大值和最小值,所以可设,,所以,当时,的最小值,故选D.【点睛】本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.8、A【解析】

由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值.【详解】,时,,,∴,由题意,∴.故选:A.【点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键.9、B【解析】

求函数导数,利用切线斜率求出,根据切线过点求出即可.【详解】因为,所以,故,解得,又切线过点,所以,解得,所以,故选:B【点睛】本题主要考查了导数的几何意义,切线方程,属于中档题.10、C【解析】

由复数除法的运算法则求出,再由模长公式,即可求解.【详解】由.故选:C.【点睛】本题考查复数的除法和模,属于基础题.11、A【解析】

结合已知可知,可求,进而可求,代入,结合,可求,即可判断.【详解】图象上相邻两个极值点,满足,即,,,且,,,,,,当时,为函数的一个极小值点,而.故选:.【点睛】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用.12、B【解析】

由三视图判断出原图,将几何体补形为长方体,由此计算出几何体外接球的直径,进而求得球的表面积.【详解】根据题意和三视图知几何体是一个底面为直角三角形的直三棱柱,底面直角三角形的斜边为2,侧棱长为2且与底面垂直,因为直三棱柱可以复原成一个长方体,该长方体外接球就是该三棱柱的外接球,长方体对角线就是外接球直径,则,那么.故选:B【点睛】本小题主要考查三视图还原原图,考查几何体外接球的有关计算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

把平方利用数量积的运算化简即得解.【详解】因为,,,所以,∴,∴,因为所以.故答案为:【点睛】本题主要考查平面向量的数量积的运算法则,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.14、【解析】

由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域.【详解】,,则,.故答案为:.【点睛】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值.求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论.15、2【解析】

根据递推公式可考虑分析,再累加求出关于关于参数的关系,根据表达式的取值分析出,再用数学归纳法证明满足条件即可.【详解】因为,累加可得.若,注意到当时,,不满足对任意的正整数均有.所以.当时,证明:对任意的正整数都有.当时,成立.假设当时结论成立,即,则,即结论对也成立.由数学归纳法可知,对任意的正整数都有.综上可知,所求实数的最大值是2.故答案为:2【点睛】本题主要考查了根据数列的递推公式求解参数最值的问题,需要根据递推公式累加求解,同时注意结合参数的范围问题进行分析.属于难题.16、【解析】

设点为,由抛物线定义知,,求出点P坐标代入双曲线方程得到的关系式,求出双曲线的渐近线方程,利用点到直线的距离公式求解即可.【详解】由题意得F(2,0),因为点P在抛物线y2=8x上,|FP|=5,设点为,由抛物线定义知,,解得,不妨取P(3,2),代入双曲线-=1,得-=1,又因为a2+b2=4,解得a=1,b=,因为双曲线的渐近线方程为,所以双曲线的渐近线为y=±x,由点到直线的距离公式可得,点F到双曲线的渐近线的距离.故答案为:【点睛】本题考查双曲线和抛物线方程及其几何性质;考查运算求解能力和知识迁移能力;灵活运用双曲线和抛物线的性质是求解本题的关键;属于中档题、常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【解析】

(1)连接,,则且为的中点,又∵为的中点,∴,又平面,平面,故平面.(2)由平面,得,.以为原点,分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,设,则,,,,,.取平面的一个法向量为,由,得:,令,得同理可得平面的一个法向量为∵平面平面,∴解得,得,又,设直线与平面所成角为,则.所以,直线与平面所成角的正弦值是.18、(1);(2)存在,.【解析】

(1)根据抛物线的定义,容易知其轨迹为抛物线;结合已知点的坐标,即可求得方程;(2)由抛物线方程求得点的坐标,设出直线的方程,利用导数求得点的坐标,联立直线的方程和抛物线方程,结合韦达定理,求得,进而求得与之间的大小关系,即可求得参数.【详解】(1)由题意得,点与点的距离始终等于点到直线的距离,由抛物线的定义知圆心的轨迹是以点为焦点,直线为准线的抛物线,则,.∴圆心的轨迹方程为.(2)因为是轨迹上横坐标为2的点,由(1)不妨取,所以直线的斜率为1.因为,所以设直线的方程为,.由,得,则在点处的切线斜率为2,所以在点处的切线方程为.由得所以,所以.由消去得,由,得且.设,,则,.因为点,,在直线上,所以,,所以,所以.∴故存在,使得.【点睛】本题考查抛物线轨迹方程的求解,以及抛物线中定值问题的求解,涉及导数的几何意义,属综合性中档题.19、(1)见解析;(2)【解析】

(1)补充完整的列联表如下:合格不合格合计高一新生121426非高一新生18624合计302050则的观测值,所以有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关.(2)抽取的5名学生中竞赛成绩合格的有名学生,记为,竞赛成绩不合格的有名学生,记为,从这5名学生中随机抽取2名学生的基本事件有:,共10种,这2名学生竞赛成绩都合格的基本事件有:,共3种,所以这2名学生竞赛成绩都合格的概率为.20、(1)(2)存在,【解析】

由数列为“数列”可得,,,两式相减得,又,利用等比数列通项公式即可求出,进而求出;由题意得,,,两式相减得,,据此可得,当时,,进而可得,即数列为常数列,进而可得,结合,得到关于的不等式,再由时,且为整数即可求出符合题意的的所有值.【详解】因为数列为“数列”,所以,故,两式相减得,在中令,则可得,故所以,所以数列是以为首项,以为公比的等比数列,所以,因为,所以.(2)由题意得,故,两式相减得所以,当时,又因为所以当时,所以成立,所以当时,数列是常数列,所以因为当时,成立,所以,所以在中令,因为,所以可得,所以,由时,且为整数,可得,把分别代入不等式可得,,所以存在数列符合题意,的所有值为.【点睛】本题考查数列的新定义、等比数列的通项公式和数列递推公式的运用;考查运算求解能力、逻辑推理能力和对新定义的理解能力;通过反复利用递推公式,得到数列为常数列是求解本题的关键;属于综合型强、难度大型试题.21、(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)推导出BC⊥CE,从而EC⊥平面ABCD,进而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,从而BD⊥AC,进而四边形ABCD是菱

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论