版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省惠州一中2025届高三一诊考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若实数、满足,则的最小值是()A. B. C. D.2.已知三棱柱()A. B. C. D.3.已知复数,满足,则()A.1 B. C. D.54.已知数列的通项公式为,将这个数列中的项摆放成如图所示的数阵.记为数阵从左至右的列,从上到下的行共个数的和,则数列的前2020项和为()A. B. C. D.5.一袋中装有个红球和个黑球(除颜色外无区别),任取球,记其中黑球数为,则为()A. B. C. D.6.若的内角满足,则的值为()A. B. C. D.7.已知P是双曲线渐近线上一点,,是双曲线的左、右焦点,,记,PO,的斜率为,k,,若,-2k,成等差数列,则此双曲线的离心率为()A. B. C. D.8.已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是()A. B. C. D.9.已知分别为双曲线的左、右焦点,过的直线与双曲线的左、右两支分别交于两点,若,则双曲线的离心率为()A. B.4 C.2 D.10.一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是()A. B. C. D.11.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为()A. B.6 C. D.12.已知是虚数单位,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设实数,满足,则的最大值是______.14.已知二面角α﹣l﹣β为60°,在其内部取点A,在半平面α,β内分别取点B,C.若点A到棱l的距离为1,则△ABC的周长的最小值为_____.15.直线xsinα+y+2=0的倾斜角的取值范围是________________.16.已知实数,满足则的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点,中心都在坐标原点,且椭圆与的离心率均为.(Ⅰ)求椭圆与椭圆的标准方程;(Ⅱ)过点M的互相垂直的两直线分别与,交于点A,B(点A、B不同于点M),当的面积取最大值时,求两直线MA,MB斜率的比值.18.(12分)已知点和椭圆.直线与椭圆交于不同的两点,.(1)当时,求的面积;(2)设直线与椭圆的另一个交点为,当为中点时,求的值.19.(12分)设函数f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x>1时,g(x)>0;(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.20.(12分)等差数列中,,,分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)请选择一个可能的组合,并求数列的通项公式;(2)记(1)中您选择的的前项和为,判断是否存在正整数,使得,,成等比数列,若有,请求出的值;若没有,请说明理由.21.(12分)已知向量,函数.(1)求函数的最小正周期及单调递增区间;(2)在中,三内角的对边分别为,已知函数的图像经过点,成等差数列,且,求a的值.22.(10分)过点P(-4,0)的动直线l与抛物线相交于D、E两点,已知当l的斜率为时,.(1)求抛物线C的方程;(2)设的中垂线在轴上的截距为,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案【详解】作出不等式组所表示的可行域如下图所示:联立,得,可得点,由得,平移直线,当该直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故选:D.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是基础题.2、C【解析】因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=3、A【解析】
首先根据复数代数形式的除法运算求出,求出的模即可.【详解】解:,,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题.4、D【解析】
由题意,设每一行的和为,可得,继而可求解,表示,裂项相消即可求解.【详解】由题意,设每一行的和为故因此:故故选:D【点睛】本题考查了等差数列型数阵的求和,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.5、A【解析】
由题意可知,随机变量的可能取值有、、、,计算出随机变量在不同取值下的概率,进而可求得随机变量的数学期望值.【详解】由题意可知,随机变量的可能取值有、、、,则,,,.因此,随机变量的数学期望为.故选:A.【点睛】本题考查随机变量数学期望的计算,考查计算能力,属于基础题.6、A【解析】
由,得到,得出,再结合三角函数的基本关系式,即可求解.【详解】由题意,角满足,则,又由角A是三角形的内角,所以,所以,因为,所以.故选:A.【点睛】本题主要考查了正弦函数的性质,以及三角函数的基本关系式和正弦的倍角公式的化简、求值问题,着重考查了推理与计算能力.7、B【解析】
求得双曲线的一条渐近线方程,设出的坐标,由题意求得,运用直线的斜率公式可得,,,再由等差数列中项性质和离心率公式,计算可得所求值.【详解】设双曲线的一条渐近线方程为,且,由,可得以为圆心,为半径的圆与渐近线交于,可得,可取,则,设,,则,,,由,,成等差数列,可得,化为,即,可得,故选:.【点睛】本题考查双曲线的方程和性质,主要是渐近线方程和离心率,考查方程思想和运算能力,意在考查学生对这些知识的理解掌握水平.8、C【解析】
在对称轴处取得最值有,结合,可得,易得曲线的解析式为,结合其对称中心为可得即可得到的最小值.【详解】∵直线是曲线的一条对称轴.,又..∴平移后曲线为.曲线的一个对称中心为..,注意到故的最小值为.故选:C.【点睛】本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是一道中档题.9、A【解析】
由已知得,,由已知比值得,再利用双曲线的定义可用表示出,,用勾股定理得出的等式,从而得离心率.【详解】.又,可令,则.设,得,即,解得,∴,,由得,,,该双曲线的离心率.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是由向量数量积为0得出垂直关系,利用双曲线的定义把双曲线上的点到焦点的距离都用表示出来,从而再由勾股定理建立的关系.10、C【解析】
画出直观图,由球的表面积公式求解即可【详解】这个几何体的直观图如图所示,它是由一个正方体中挖掉个球而形成的,所以它的表面积为.故选:C【点睛】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.11、D【解析】
根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解.【详解】如图,该几何体为正方体去掉三棱锥,所以该几何体的体积为:,故选:D【点睛】本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题.12、B【解析】
根据复数的乘法运算法则,直接计算,即可得出结果.【详解】.故选B【点睛】本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
根据目标函数的解析式形式,分析目标函数的几何意义,然后判断求出目标函数取得最优解的点的坐标,即可求解.【详解】作出实数,满足表示的平面区域,如图所示:由可得,则表示直线在轴上的截距,截距越小,越大.由可得,此时最大为1,故答案为:1.【点睛】本题主要考查线性规划知识的运用,考查学生的计算能力,考查数形结合的数学思想.14、【解析】
作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ADC的周长为AB+AC+BC=MB+BC+CN,当四点共线时长度最短,结合对称性和余弦定理求解.【详解】作A关于平面α和β的对称点M,N,交α和β与D,E,连接MN,AM,AN,DE,根据对称性三角形ABC的周长为AB+AC+BC=MB+BC+CN,当M,B,C,N共线时,周长最小为MN设平面ADE交l于,O,连接OD,OE,显然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根据余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案为:.【点睛】此题考查求空间三角形边长的最值,关键在于根据几何性质找出对称关系,结合解三角形知识求解.15、【解析】因为sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直线的斜率范围为[-1,1],由倾斜角与斜率关系得倾斜角范围是.答案:16、【解析】
根据约束条件画出可行域,即可由直线的平移方法求得的取值范围.【详解】.由题意,画出约束条件表示的平面区域如下图所示,令,则如图所示,图中直线所示的两个位置为的临界位置,根据几何关系可得与轴的两个交点分别为,所以的取值范围为.故答案为:【点睛】本题考查了非线性约束条件下线性规划的简单应用,由数形结合法求线性目标函数的取值范围,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】分析:(1)根据题的条件,得到对应的椭圆的上顶点,即可以求得椭圆中相应的参数,结合椭圆的离心率的大小,求得相应的参数,从而求得椭圆的方程;(2)设出一条直线的方程,与椭圆的方程联立,消元,利用求根公式求得对应点的坐标,进一步求得向量的坐标,将S表示为关于k的函数关系,从眼角函数的角度去求最值,从而求得结果.详解:(Ⅰ)依题意得对:,,得:;同理:.(Ⅱ)设直线的斜率分别为,则MA:,与椭圆方程联立得:,得,得,,所以同理可得.所以,从而可以求得因为,所以,不妨设,所以当最大时,,此时两直线MA,MB斜率的比值.点睛:该题考查的是有关椭圆与直线的综合题,在解题的过程中,注意椭圆的对称性,以及其特殊性,与y轴的交点即为椭圆的上顶点,结合椭圆焦点所在轴,得到相应的参数的值,再者就是应用离心率的大小找参数之间的关系,在研究直线与椭圆相交的问题时,首先设出直线的方程,与椭圆的方程联立,求得结果,注意从函数的角度研究问题.18、(1);(2)或【解析】
(1)联立直线的方程和椭圆方程,求得交点的横坐标,由此求得三角形的面积.(2)法一:根据的坐标求得的坐标,将的坐标都代入椭圆方程,化简后求得的坐标,进而求得的值.法二:设出直线的方程,联立直线的方程和椭圆的方程,化简后写出根与系数关系,结合求得点的坐标,进而求得的值.【详解】(1)设,,若,则直线的方程为,由,得,解得,,设直线与轴交于点,则且.(2)法一:设点因为,,所以又点,都在椭圆上,所以解得或所以或.法二:设显然直线有斜率,设直线的方程为由,得所以又解得或所以或所以或.【点睛】本小题主要考查直线和椭圆的位置关系,考查椭圆中三角形面积的求法,考查运算求解能力,属于中档题.19、(Ⅰ)当时,<0,单调递减;当时,>0,单调递增;(Ⅱ)详见解析;(Ⅲ).【解析】试题分析:本题考查导数的计算、利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.第(Ⅰ)问,对求导,再对a进行讨论,判断函数的单调性;第(Ⅱ)问,利用导数判断函数的单调性,从而证明结论,第(Ⅲ)问,构造函数=(),利用导数判断函数的单调性,从而求解a的值.试题解析:(Ⅰ)<0,在内单调递减.由=0有.当时,<0,单调递减;当时,>0,单调递增.(Ⅱ)令=,则=.当时,>0,所以,从而=>0.(Ⅲ)由(Ⅱ),当时,>0.当,时,=.故当>在区间内恒成立时,必有.当时,>1.由(Ⅰ)有,而,所以此时>在区间内不恒成立.当时,令=().当时,=.因此,在区间单调递增.又因为=0,所以当时,=>0,即>恒成立.综上,.【考点】导数的计算,利用导数求函数的单调性,解决恒成立问题【名师点睛】本题考查导数的计算,利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.求函数的单调性,基本方法是求,解方程,再通过的正负确定的单调性;要证明不等式,一般证明的最小值大于0,为此要研究函数的单调性.本题中注意由于函数的极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到,有一定的难度.20、(1)见解析,或;(2)存在,.【解析】
(1)满足题意有两种组合:①,,,②,,,分别计算即可;(2)由(1)分别讨论两种情况,假设存在正整数,使得,,成等比数列,即,解方程是否存在正整数解即可.【详解】(1)由题意可知:有两种组合满足条件:①,,,此时等差数列,,,所以其通项公式为.②
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024企业信用借款合同模板3篇
- 秋季学期自主学习能力提升计划
- (新)2025年急救相关知识考试题库带答案(综合题)
- 1 《开开心心上学去》(教学实录)-2024-2025学年统编版(2024)(五四制)道德与法治一年级上册
- 2025版高考生物第一部分专题练专练11物质跨膜运输的实例
- 2024年度高新技术企业厂房租赁协议2篇
- 2024年八年级语文上册 第六单元 第24课《诗词五首》教学实录 新人教版
- 2024年度居间服务评价与改进合同3篇
- 六盘水幼儿师范高等专科学校《小学课程整合研究与设计》2023-2024学年第一学期期末试卷
- 2023三年级英语下册 Module 1 Unit 1 It's The Abc Song教学实录2 外研版(三起)
- 校本研修教研工作总结汇报课件
- 山东省高等医学院校临床教学基地水平评估指标体系与标准(修订)
- 大孔吸附树脂技术课件
- 空白货品签收单
- 建筑电气施工图(1)课件
- 质量管理体系运行奖惩考核办法课案
- 泰康人寿养老社区介绍课件
- T∕CSTM 00584-2022 建筑用晶体硅光伏屋面瓦
- 2020春国家开放大学《应用写作》形考任务1-6参考答案
- 国家开放大学实验学院生活中的法律第二单元测验答案
- CAMDS操作方法及使用技巧
评论
0/150
提交评论