分类加法计数原理与分步乘法计数原理-2025高考数学一轮复习_第1页
分类加法计数原理与分步乘法计数原理-2025高考数学一轮复习_第2页
分类加法计数原理与分步乘法计数原理-2025高考数学一轮复习_第3页
分类加法计数原理与分步乘法计数原理-2025高考数学一轮复习_第4页
分类加法计数原理与分步乘法计数原理-2025高考数学一轮复习_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十章

DIS川ZHANG计数原理、概芟J随机变量及其州J

第1节分类加法计数原理与分步乘法计数原理

考试要求1.理解分类加法计数原理、分步乘法计数原理及其意义.2.能解决简单

的实际问题.

知识诊断•基础夯实

【知识梳理】

1.分类加法计数原理

完成一件事有两类不同方案,在第1类方案中有机种不同的方法,在第2类方案

中有〃种不同的方法.那么完成这件事共有N=m+”种不同的方法.

2.分步乘法计数原理

完成一件事需要两个步骤,做第1步有机种不同的方法,做第2步有冏种不同的

方法,那么完成这件事共有N=mXv种不同的方法.

3.分类加法和分步乘法计数原理的区别在于:分类加法计数原理针对“分类”问

题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法

计数原理针对“分步”问题,各个步骤中的方法相互依存,只有各个步骤都完成

了才算完成这件事.

[常用结论]

分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础,并贯穿其始

终.

(1)分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于其中一类.

(2)分步乘法计数原理中,各个步骤中的方法相互依存,步与步之间“相互独立,

分步完成”.

【诊断自测】

1.思考辨析(在括号内打“♦”或“X”)

⑴在分类加法计数原理中,两类不同方案中的方法可以相同.()

(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()

(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()

答案(1)X(2)V(3)V

解析分类加法计数原理,每类方案中的方法都是不同的,每一种方法都能完成

这件事;分步乘法计数原理,每步的方法都是不同的,每步的方法只能完成这一

步,不能完成这件事,所以(1)不正确.

2.(选修三P5T1改编)(1)一项工作可以用2种方法完成,有5人只会用第1种方法

完成,另有4人只会用第2种方法完成,从中选出1人来完成这项工作,不同选

法的种数是

(2)从A村去3村的道路有3条,从5村去C村的道路有2条,则从A村经5村

去C村,不同路线的条数是.

答案(1)9(2)6

解析(1)不同的选法共有5+4=9种方法.

(2)从A村去3村有3种走法,由3村去。村有2种走法,根据乘法原理可得2X3

=6(种).

3.如图所示,在A,5间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则

电路不通.今发现A,3之间电路不通,则焊接点脱落的不同情况有种.

答案13

解析电路不通可能是1个或多个焊接点脱落,问题比较复杂,但电路通的情况

却只有3种,即2或3脱落或全不脱落,每个焊接点有脱落与不脱落两种情况,

故共有24—3=13(种)情况.

4.3个班分别从5个风景点中选择一处游览,不同的选法有种.

答案125

解析因为第1、第2、第3个班各有5种选法,由分步乘法计数原理,可得不同

的选法有5X5X5=125(种).

考点突破•题型剖析

考点一分类加法计数原理的应用

例1(1)从甲地到乙地有三种方式可以到达.每天有8班汽车、2班火车和2班飞机.

一天一人从甲地去乙地,共有种不同的方法.

答案12

解析分三类:一类是乘汽车有8种方法;

一类是乘火车有2种方法;

一类是乘飞机有2种方法,

由分类加法计数原理知共有8+2+2=12(种)方法.

(2)满足a,0,1,2],且关于x的方程af+2x+人=0有实数解的有序

数对(a,0)的个数为.

答案13

解析当a=0时,6的值可以是一1,0,1,2,故(a,与的个数为4;

当aWO时,要使方程ar+Zx+b:。有实数解,需使/=4-4">0,即仍W1.

若a=—1,则人的值可以是一1,0,1,2,(a,0)的个数为4;

若a=l,则。的值可以是一1,0,1,(a,与的个数为3;

若a=2,则6的值可以是一1,0,(a,份的个数为2.

由分类加法计数原理可知(a,。)的个数为

4+4+3+2=13.

感悟提升分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键

词、关键元素和关键位置.

(1)根据题目特点恰当选择一个分类标准.

(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不

同种类的两种方法才是不同的方法,不能重复.

⑶分类时除了不能交叉重复外,还不能有遗漏.

训练1(1)某同学逛书店,发现3本喜欢的书,决定至少买其中的一本,则购买方

案有()

A.3种B.6种

C.7种D.9种

答案C

解析买一本,有3种方案;

买两本,有3种方案;

买三本,有1种方案,

因此共有方案3+3+1=7(种).

(2)集合/={x,1},Q={y,1,2},其中x,ye{l,2,3,…,9},且PUQ.把

满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是

()

A.9B.14

C.15D.21

答案B

解析当x=2时,xWy,点的个数为1X7=7.

当x丰2时,由PGQ,.,.x=y.

...X可从3,4,5,6,7,8,9中取,有7种方法.

因此满足条件的点共有7+7=14(个).

考点二分步乘法计数原理的应用

例2有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报

名方法(六名同学不一定都能参加)?

(1)每人只参加一项,每项人数不限;

(2)每项限报一人,且每人至多参加一项;

⑶每项限报一人,但每人参加的项目不限.

解(1)每人都可以从三个竞赛项目中选报一项,各有3种不同的报名方法,

根据分步乘法计数原理,可得不同的报名方法共有36=729(种).

(2)每项限报一人,且每人至多参加一项,

因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项

目只有4种选法,

根据分步乘法计数原理,可得不同的报名方法共有6X5X4=120(种).

(3)每人参加的项目不限,因此每一个项目都可以从这六名同学中选出一人参赛,

根据分步乘法计数原理,可得不同的报名方法共有63=216(种).

感悟提升1.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即

分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,

只有各个步骤都完成了,才算完成这件事.

2.分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,

逐步完成.

训练2(1)某机场T3航站楼有7个入口,2个接机口(出口),则某人进出机场的方

案数为()

A.4B.9

C.14D.49

答案C

解析方案种数为7X2=14.

(2)已知集合"={1,-2,3},N={-4,5,6,—7},从N这两个集合中各

选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示

第一、第二象限内不同的点的个数是()

A.12B.8

C.6D.4

答案C

解析分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2

种情况,

因此第一、二象限内不同点的个数是3X2=6.

考点三两个计数原理的综合应用

角度1与数字有关的问题

例3用0,1,2,3,4,5,6这7个数字可以组成个无重复数字的四位

偶数(用数字作答).

答案420

解析要完成的“一件事”为“组成无重复数字的四位偶数”,所以千位数字不

能为0,个位数字必须是偶数,且组成的四位数中四个数字不重复,因此应先分

类,再分步.

第1类,当千位数字为奇数,即取1,3,5中的任意一个时,个位数字可取0,2,

4,6中的任意一个,再依次取百位、十位数字.

共有3X4X5X4=240(种)取法.

第2类,当千位数字为偶数,即取2,4,6中的任意一个时,个位数字可以取除

首位数字的任意一个偶数数字,再依次取百位、十位数字.

共有3X3X5X4=180(种)取法,

共可以组成240+180=420(个)无重复数字的四位偶数.

角度2与几何有关的问题

例4如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面

组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平

行线面组”的个数是()

A.60B.48

C.36D.24

答案B

解析一个长方体的面可以和它相对的面上的4条棱和两条对角线组成6个“平

行线面组”,一共有6个面,共有6X6=36(个).

长方体的每个对角面有2个“平行线面组”,共有6个对角面,一共有6X2=

12(个).

根据分类加法计数原理知共有36+12=48(个).

角度3涂色问题

例5如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种

颜色,相邻区域所涂颜色不同,则不同的涂色方法有()

A.24种B.48种

C.72种D.96种

答案C

解析分两种情况:

①4c不同色,先涂A有4种,。有3种,E有2种,3,。有1种,有4X3X2X1

=24(#);

②A,C同色,先涂A,C有4种,再涂E有3种,3,。各有2种,有4X3X2X2

=48(种).

故不同的涂色方法有48+24=72(种).

感悟提升1.在综合应用两个原理解决问题时应注意:(1)一般是先分类再分步.

在分步时可能又用到分类加法计数原理.(2)对于较复杂的两个原理综合应用的问

题,可恰当地列出示意图或列出表格,使问题形象化、直观化.

2.解决涂色问题,可按颜色的种数分类,也可按不同的区域分步完成.

训练3(1)(2023•杭州调研)用0,1,…,9十个数字,可以组成有重复数字的三位

数的个数为()

A.243B.252

C.261D.279

答案B

解析0,1,2,9共能组成9X10X10=900(个)三位数,

其中无重复数字的三位数有9X9X8=648(个),

故有重复数字的三位数有900—648=252(个).

⑵现有5种不同颜色的染料,要对如图所示的四个不同区域进行涂色,要求有公

共边的两个区域不能使用同一种颜色,则不同的涂色方法的种数是()

A.120B.140

C.240D.260

答案D

解析由题意,先涂A处,有5种涂法,再涂3处4种涂法,第三步涂C,若C

与A同色,则。有4种涂法,若C与A不同色,则。有3种涂法,由此得不同

的着色方案有5X4X(1X4+3X3)=26O(种).

分层精练•巩固提升

【A级基础巩固】

L每天从甲地到乙地的飞机有5班,高铁有10趟,动车有6趟,公共汽车有12

班.某人某天从甲地前往乙地,则其出行方案共有()

A.22种B.33种

C.300种D.3600种

答案B

解析从甲地到乙地不同的方案数为5+10+6+12=33.

2.(2023•衡阳质检)将3张不同的冬奥会门票分给10名同学中的3人,每人1张,

不同的分法种数为()

A.720B.240

C.120D.60

答案A

解析可分三步:第一步,第1张门票有10种不同的分法;第二步,第2张门票

有9种不同的分法;第三步,第3张门票有8种不同的分法,由分步乘法计数原

理得,共有10X9X8=720种不同分法.

3.如图,小明从街道的E处出发,先到R处与小红会合,再一起到位于G处的老

年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()

1^1

III

♦bLm口

A.24B.18

C.12D.9

答案B

解析分两步,第一步,从E-凡有6条可以选择的最短路径;第二步,从R-G,

有3条可以选择的最短路径.由分步乘法计数原理可知有6X3=18条可以选择的

最短路径.

4.从0,1,2,3,4,5这六个数字中,任取两个不同的数字相加,其和为偶数的

不同取法的种数为()

A.30B.20

C.10D.6

答案D

解析从0,1,2,3,4,5这六个数字中任取两个不同的数字的和为偶数可分为

两类:

第一类,取出的两个数都是偶数,有0和2,0和4,2和4,共3种不同的取法;

第二类,取出的两个数都是奇数,有1和3,1和5,3和5,共3种不同的取法.

由分类加法计数原理得,共有3+3=6种不同的取法.

5.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,

这样的等比数列的个数为()

A.3B.4

C.6D.8

答案D

解析以1为首项的等比数列为1,2,4;1,3,9;

以2为首项的等比数列为2,4,8;

以4为首项的等比数列为4,6,9;

把这4个数列的顺序颠倒,又得到另外的4个数列,

...所求的数列共有2(2+1+1)=8(个).

6.如图所示,某景观湖内有四个人工小岛,为方便游客登岛观赏美景,现计划设

计三座景观桥连通四个小岛,每座桥只能连通两个小岛,且每个小岛最多有两座

桥连接,则设计方案的种数最多是()

A.8B.12

C.16D.24

答案B

解析四个人工小岛分别记为A,B,C,D,对A分有一座桥相连和两座桥相连

两种情况,用“一”表示桥.

①当A只有一座桥相连时,有A—B—C—D,A—B—D—C,A—C—B—D,

A—C—D—B,A—D—B—C,A—D—C—B,共6种方法;

②当A有两座桥相连时,有C—A—B—D,D—A—B—C,D—A—C—B,

B—A—C—D,B—A—D—C,C—A—D—B,共6种方法.故设计方案最多有6+6

=12(种).

7.如图所示,积木拼盘由A,B,C,D,E五块积木组成,若每块积木都要涂一种

颜色,且为了体现拼盘的特色,相邻的区域需涂不同的颜色(如:A与3为相邻区

域,A与。为不相邻区域),现有五种不同的颜色可供挑选,则不同的涂色方法的

种数是()

A.780B.840

C.900D.960

答案D

解析先涂A,则A有5种涂法,再涂3,因为3与A相邻,所以3的颜色只要

与A不同即可,有4种涂法,同理C有3种涂法,。有4种涂法,E有4种涂法,

由分步乘法计数原理,可知不同的涂色方法种数为5X4X3X4X4=960.

8.将“福”、“禄”、“寿”填入到如图所示的4X4小方格内,每格内只填入一

个汉字,且任意的两个汉字既不同行也不同列,则不同的填写方法有()

A.288种B.144种

C.576种D.96种

答案C

解析第一步,先从16个格子中任选一格放一个汉字有16种方法,

第二步,任意的两个汉字既不同行也不同列,剩下的只有9个格子可以放,有9

种方法,

第三步,第三个汉字只有4个格子可以放,有4种方法,

由分步乘法计数原理知共有16X9X4=576(种).

9.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,6组成复数a+历,

其中虚数的个数是.

答案36

解析因为a+历为虚数,所以6W0,即》有6种取法,。有6种取法,由分步

乘法计数原理知可以组成6X6=36个虚数.

10.乘积(ai+。2+a3)(b\+历+加+Z?4)(C1+C2+C3+C4+C5)展开后的项数为

答案60

解析从第一个括号中选一个字母有3种方法,从第二个括号中选一个字母有4

种方法,从第三个括号中选一个字母有5种方法,故根据分步乘法计数原理可知

共有N=3X4X5=60(项).

H.4张卡片的正、反面分别写有0与1,2与3,4与5,6与7,将其中3张卡片

排放在一起,可组成个不同的三位数.

答案168

解析要组成三位数,根据百位、十位、个位应分三步:

第一步:百位可放8—1=7个数;

第二步:十位可放6个数;

第三步:个位可放4个数.

故由分步乘法计数原理,得共可组成7X6X4=168(个)不同的三位数.

12.如图,在一个正六边形的六个区域中涂色,要求同一区域用同一种颜色,相邻

的两个区域(有公共边)涂不同的颜色,现有5种不同的颜色可供选择,则不同的

涂色方案有种.

答案4100

解析若A,C,E三个区域用1种颜色,则有5X43=320种涂色方案;

若A,C,E三个区域用2种颜色,则有(5X4X3)X(4X3X3)=2160种涂色方案;

若A,C,E三个区域用3种颜色,则有5X4X3X33=1620种涂色方案.

所以共有320+2160+1620=4100种涂色方案.

【B级能力提升】

13.(多选)现有4个数学课外兴趣小组,第一、二、三、四组分别有7人、8人、9

人、10人,则下列说法正确的是()

A.选1人为负责人的选法种数为34

B.每组选1名组长的选法种数为5400

C.若推选2人发言,这2人需来自不同的小组,则不同的选法种数为420

D.若另有3名学生加入这4个小组,加入的小组可自由选择,且第一组必须有人

选,则不同的选法有37种

答案AD

解析对于A,4个数学课外兴趣小组共有7+8+9+10=34(人),故选1人为负

责人的选法共有34种,A正确;

对于B,分四步:第一、二、三、四步分别为从第一、二、三、四组中各选1名

组长,所以不同的选法共有7X8X9X10=5040(种),B错误;

对于C,分六类:从第一、二组中各选1人,有7X8种不同的选法;

从第一、三组中各选1人,有7X9种不同的选法;

从第一、四组中各选1人,有7X10种不同的选法;

从第二、三组中各选1人,有8X9种不同的选法;

从第二、四组中各选1人,有8X10种不同的选法;

从第三、四组中各选1人,有9X10种不同的选法.

所以不同的选法共有7X8+7X9+7X10+8X9+8X10+9X10=431(种),C错

误;

对于D,若不考虑限制条件,每个人都有4种选法,共有43=64(种)选法,其中

第一组没有人选,每个人都有3种选法,共有33=27(种)选法,所以不同的选法

有64—27=37(种),D正确.

14.如图,将钢琴上的12个键依次记为ai,G,…,.2.设.若k-j

=3且尸,=4,则称q,勾,以为原位大三和弦;若左一/=4且尸,=3,则称如

勾,以为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个

数之和为()

A.5B.8

C.10D.15

答案C

解析满足条件1WK/V左W12,左一j=3且j—,=4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论