广西壮族自治区贵港市桂平市2025届高考适应性考试数学试卷含解析_第1页
广西壮族自治区贵港市桂平市2025届高考适应性考试数学试卷含解析_第2页
广西壮族自治区贵港市桂平市2025届高考适应性考试数学试卷含解析_第3页
广西壮族自治区贵港市桂平市2025届高考适应性考试数学试卷含解析_第4页
广西壮族自治区贵港市桂平市2025届高考适应性考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西壮族自治区贵港市桂平市2025届高考适应性考试数学试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.自2019年12月以来,在湖北省武汉市发现多起病毒性肺炎病例,研究表明,该新型冠状病毒具有很强的传染性各级政府反应迅速,采取了有效的防控阻击措施,把疫情控制在最低范围之内.某社区按上级要求做好在鄂返乡人员体格检查登记,有3个不同的住户属在鄂返乡住户,负责该小区体格检查的社区诊所共有4名医生,现要求这4名医生都要分配出去,且每个住户家里都要有医生去检查登记,则不同的分配方案共有()A.12种 B.24种 C.36种 D.72种2.设为坐标原点,是以为焦点的抛物线上任意一点,是线段上的点,且,则直线的斜率的最大值为()A.1 B. C. D.3.已知复数z,则复数z的虚部为()A. B. C.i D.i4.平行四边形中,已知,,点、分别满足,,且,则向量在上的投影为()A.2 B. C. D.5.若复数满足,则的虚部为()A.5 B. C. D.-56.若,满足约束条件,则的最大值是()A. B. C.13 D.7.已知函数(,且)在区间上的值域为,则()A. B. C.或 D.或48.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是()A. B. C. D.9.展开项中的常数项为A.1 B.11 C.-19 D.5110.已知集合,B={y∈N|y=x﹣1,x∈A},则A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}11.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是()A. B.C. D.12.如图,平面与平面相交于,,,点,点,则下列叙述错误的是()A.直线与异面B.过只有唯一平面与平行C.过点只能作唯一平面与垂直D.过一定能作一平面与垂直二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,满足,,,则的取值范围为_________.14.如图所示,平面BCC1B1⊥平面ABC,ABC=120,四边形BCC1B1为正方形,且AB=BC=2,则异面直线BC1与AC所成角的余弦值为_____.15.在中,,,则_________.16.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)时,求不等式解集;(2)若的解集包含于,求a的取值范围.18.(12分)某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究“日平均走步数和性别是否有关”,统计了2019年1月份所有用户的日平均步数,规定日平均步数不少于8000的为“运动达人”,步数在8000以下的为“非运动达人”,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:运动达人非运动达人总计男3560女26总计100(1)(i)将列联表补充完整;(ii)据此列联表判断,能否有的把握认为“日平均走步数和性别是否有关”?(2)将频率视作概率,从该公司的所有人“运动达人”中任意抽取3个用户,求抽取的用户中女用户人数的分布列及期望.附:19.(12分)某市计划在一片空地上建一个集购物、餐饮、娱乐为一体的大型综合园区,如图,已知两个购物广场的占地都呈正方形,它们的面积分别为13公顷和8公顷;美食城和欢乐大世界的占地也都呈正方形,分别记它们的面积为公顷和公顷;由购物广场、美食城和欢乐大世界围成的两块公共绿地都呈三角形,分别记它们的面积为公顷和公顷.(1)设,用关于的函数表示,并求在区间上的最大值的近似值(精确到0.001公顷);(2)如果,并且,试分别求出、、、的值.20.(12分)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过度的部分按元/度收费,超过度但不超过度的部分按元/度收费,超过度的部分按元/度收费.(I)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;(Ⅱ)为了了解居民的用电情况,通过抽样,获得了今年1月份户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这户居民中,今年1月份用电费用不超过元的占,求,的值;(Ⅲ)在满足(Ⅱ)的条件下,若以这户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.21.(12分)在平面直角坐标系中,椭圆:的右焦点为(,为常数),离心率等于0.8,过焦点、倾斜角为的直线交椭圆于、两点.⑴求椭圆的标准方程;⑵若时,,求实数;⑶试问的值是否与的大小无关,并证明你的结论.22.(10分)在三棱锥S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45∘,∠SAC=60°,D为棱AB的中点,SA=2(I)证明:SD⊥BC;(II)求直线SD与平面SBC所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

先将4名医生分成3组,其中1组有2人,共有种选法,然后将这3组医生分配到3个不同的住户中去,有种方法,由分步原理可知共有种.【详解】不同分配方法总数为种.故选:C【点睛】此题考查的是排列组合知识,解此类题时一般先组合再排列,属于基础题.2、A【解析】

设,因为,得到,利用直线的斜率公式,得到,结合基本不等式,即可求解.【详解】由题意,抛物线的焦点坐标为,设,因为,即线段的中点,所以,所以直线的斜率,当且仅当,即时等号成立,所以直线的斜率的最大值为1.故选:A.【点睛】本题主要考查了抛物线的方程及其应用,直线的斜率公式,以及利用基本不等式求最值的应用,着重考查了推理与运算能力,属于中档试题.3、B【解析】

利用复数的运算法则、虚部的定义即可得出【详解】,则复数z的虚部为.故选:B.【点睛】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.4、C【解析】

将用向量和表示,代入可求出,再利用投影公式可得答案.【详解】解:,得,则向量在上的投影为.故选:C.【点睛】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.5、C【解析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】由(1+i)z=|3+4i|,得z,∴z的虚部为.故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.6、C【解析】

由已知画出可行域,利用目标函数的几何意义求最大值.【详解】解:表示可行域内的点到坐标原点的距离的平方,画出不等式组表示的可行域,如图,由解得即点到坐标原点的距离最大,即.故选:.【点睛】本题考查线性规划问题,考查数形结合的数学思想以及运算求解能力,属于基础题.7、C【解析】

对a进行分类讨论,结合指数函数的单调性及值域求解.【详解】分析知,.讨论:当时,,所以,,所以;当时,,所以,,所以.综上,或,故选C.【点睛】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.8、C【解析】

根据循环结构的程序框图,带入依次计算可得输出为25时的值,进而得判断框内容.【详解】根据循环程序框图可知,则,,,,,此时输出,因而不符合条件框的内容,但符合条件框内容,结合选项可知C为正确选项,故选:C.【点睛】本题考查了循环结构程序框图的简单应用,完善程序框图,属于基础题.9、B【解析】

展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.【详解】展开式中的项为常数项,有3种情况:(1)5个括号都出1,即;(2)两个括号出,两个括号出,一个括号出1,即;(3)一个括号出,一个括号出,三个括号出1,即;所以展开项中的常数项为,故选B.【点睛】本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.10、A【解析】

解出集合A和B即可求得两个集合的并集.【详解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故选:A.【点睛】此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.11、D【解析】构造函数,令,则,由可得,则是区间上的单调递减函数,且,当x∈(0,1)时,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;当x∈(1,+∞)时,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函数,当x∈(-1,0)时,f(x)>0,(x2-1)f(x)<0∴当x∈(-∞,-1)时,f(x)>0,(x2-1)f(x)>0.综上所述,使得(x2-1)f(x)>0成立的x的取值范围是.本题选择D选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.12、D【解析】

根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.【详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾,故正确.B.根据异面直线的性质知,过只有唯一平面与平行,故正确.C.根据过一点有且只有一个平面与已知直线垂直知,故正确.D.根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D【点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设,,,,由,,,根据平面向量模的几何意义,可得A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,为的距离,利用数形结合求解.【详解】设,,,,如图所示:因为,,,所以A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,则即的距离,由图可知,.故答案为:【点睛】本题主要考查平面向量的模及运算的几何意义,还考查了数形结合的方法,属于中档题.14、【解析】

将平移到和相交的位置,解三角形求得线线角的余弦值.【详解】过作,过作,画出图像如下图所示,由于四边形是平行四边形,故,所以是所求线线角或其补角.在三角形中,,故.【点睛】本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.15、【解析】

先由题意得:,再利用向量数量积的几何意义得,可得结果.【详解】由知:,则在方向的投影为,由向量数量积的几何意义得:,∴故答案为【点睛】本题考查了投影的应用,考查了数量积的几何意义及向量的模的运算,属于基础题.16、【解析】由分层抽样的知识可得,即,所以高三被抽取的人数为,应填答案.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)代入可得对分类讨论即可得不等式的解集;(2)根据不等式在上恒成立去绝对值化简可得再去绝对值即可得关于的不等式组解不等式组即可求得的取值范围【详解】(1)当时,不等式可化为,①当时,不等式为,解得;②当时,不等式为,无解;③当时,不等式为,解得,综上,原不等式的解集为.(2)因为的解集包含于,则不等式可化为,即.解得,由题意知,解得,所以实数a的取值范围是.【点睛】本题考查了绝对值不等式的解法分类讨论解绝对值不等式的应用,含参数不等式的解法.难度一般.18、(1)(i)填表见解析(ii)没有的把握认为“日平均走步数和性别是否有关”(2)详见解析【解析】

(1)(i)由已给数据可完成列联表,(ii)计算出后可得;(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,的取值为,,由二项分布概率公式计算出各概率得分布列,由期望公式计算期望.【详解】解(1)(i)运动达人非运动达人总计男352560女142640总计4951100(ii)由列联表得所以没有的把握认为“日平均走步数和性别是否有关”(2)由列联表知从运动达人中抽取1个用户为女用户的概率为,.易知所以的分布列为0123.【点睛】本题考查列联表,考查独立性检验,考查随机变量的概率分布列和期望.属于中档题.本题难点在于认识到.19、(1),最大值公顷;(2)17、25、5、5.【解析】

(1)由余弦定理求出三角形ABC的边长BC,进而可以求出,,由面积公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表达式求出,。【详解】(1)由余弦定理得,,所以,,同理可得又,所以,故在区间上的最大值为,近似值为。(2)由(1)知,,,所以,进而,由知,,,故、、、的值分别是17、25、5、5。【点睛】本题主要考查利用余弦定理解三角形以及同角三角函数平方关系的应用,意在考查学生的数学建模以及数学运算能力。20、(1);(2),;(3)见解析.【解析】试题分析:(1)根据题意分段表示出函数解析式;(2)将代入(1)中函数解析式可得,即,根据频率分布直方图可分别得到关于的方程,即可得;(3)取每段中点值作为代表的用电量,分别算出对应的费用值,对应得出每组电费的概率,即可得到的概率分布列,然后求出的期望.试题解析:(1)当时,;当当时,;当当时,,所以与之间的函数解析式为.(2)由(1)可知,当时,,则,结合频率分布直方图可知,∴,(3)由题意可知可取50,150,250,350,450,550,当时,,∴,当时,,∴,当时,,∴,当时,,∴,当时,,∴,当时,,∴,故的概率分布列为25751402203104100.10.20.30.20.150.05所以随机变量的数学期望21、(1)(2)(3)为定值【解析】试题分析:(1)利用待定系数法可得,椭圆方程为;(2)我们要知道=的条件应用,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论