半导体物理知识点总结_第1页
半导体物理知识点总结_第2页
半导体物理知识点总结_第3页
半导体物理知识点总结_第4页
半导体物理知识点总结_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

半导体物理知识点总结

本章主要讨论半导体中电子的运动状态。主要介绍了半导体的几种常见晶

体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体

中电子的运动时,引入了有效质量的概念。阐述本征半导体的导电机构,引入了

空穴散射的概念。最后,介绍了Si、Ge和GaAs的能带结构。

在1.1节,半导体的几种常见晶体结构及结合性质。(重点掌握)在1.2节,

为了深入理解能带的形成,介绍了电子的共有化运动。介绍半导体中电子的状态

和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征

激发的概念。(重点掌握)在1.3节,引入有效质量的概念。讨论半导体中电子

的平均速度和加速度。(重点掌握)在1.4节,阐述本征半导体的导电机构,由

此引入了空穴散射的概念,得到空穴的特点。(重点掌握)在1.5节,介绍回旋

共振测试有效质量的原理和方法。(理解即可)在1.6节,介绍Si、Ge的能带结

构。(掌握能带结构特征)在L7节,介绍HI-V族化合物的能带结构,主要了解

GaAs的能带结构。(掌握能带结构特征)本章重建点:

重点:

1、半导体硅、铭的晶体结构(金刚石型结杓)及其特点;

三五族化合物半导体的闪锌矿型结构及其特点。

2、熟悉晶体中电子、孤立原子的电子、自由电子的运动有何不同:孤立原

子中的电子是在该原子的核和其它电子的势场中运动,自由电子是在恒定为零的

势场中运动,而晶体中的电子是在严格周期性重复排列的原子间运动(共有化运

动),单电子近似认为,晶体中的某一个电子是在周期性排列且固定不动的原子

核的势场以及其它大量电子的平均势场中运动,这个势场也是周期性变化的,而

且它的周期与品格周期相同。

3、晶体中电子的共有化运动导致分立的能级发生劈裂,是形成半导体能带

的原因,半导体能带的特点:

①存在轨道杂化,失去能级与能带的对应关系。杂化后能带重新分开为上

能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电子,导

带全空,高温下价带中的一部分电子跃迁到导带,使晶体呈现弱导电性。

③导带与价带间的能隙(Energygap)称为禁带(forbiddenband).禁带宽

度取决于晶体种类、晶体结构及温度。

④当原子数很大时,导带、价带内能级密度很大,可以认为能级准连续。

4、晶体中电子运动状态的数学描述:自由电子的运动状态:对于波矢为k

的运动状态,自由电子的能量E,动量p,速度v均有确定的数值。因此,波矢

k可用以描述自由电子的运动状态,不同的k值标志自由电子的不同状态,自由

电子的E和k的关系曲线呈抛物线形状,是连续能谱,从零到无限大的所有能量

值都是允许的。晶体中的电子运动:服从布洛赫定理:晶体中的电子是以调幅平

面波在晶体中传播。这个波函数称为布洛赫波函数。求解薛定渭方程,得到电子

在周期场中运动时其能量不连续,形成一系列允带和禁带。一个允带对应的K

值范围称为布里渊区。

5、用能带理论解释导带、半导体、绝Z彖体的导电性.

6、理解半导体中求E(k)与k的关系的方法:晶体中电子的运动状态要比

自由电子复杂得多,要得到它的E(k)表达式很困难。但在半导体中起作用地

是位于导带底或价带顶附近的电子。因此,可采用级数展开的方法研究带底或带

顶E(k)关系。

7、掌握电子的有效质量的定义:=/(一维),注意,在能带底是正值,在

能带顶是负值。电子的速度为v=,注意v可以是正值,也可以是负值,这取决

于能量对波矢的变化率。

8、引入电子有效质量后,半导体中电子所受的外力与加速度的关系具有牛

顿第二定律的形式,即@=。。可见是以有效质且代换了电子惯性质量。

9、有效质量的意义:在经典牛顿第二定律口a二f/mO,式中f是外合力,是

惯性质量。但半导体中电子在外力作用下,描述电子运动规律的方程中出现的是

有效质量皿/,而不是电子的惯性质量。这是因为外力f并不是电子受力的总和,

半导体中的电子即使在没有外加电场作用时,它也要受到半导体内部原子及其它

电子的势场作用。当电子在外力作用下运动时,它一方面受到外电场力f的作用,

同时还和半导体内部原子、电子相互作用着,电子的加速度应该是半导体内部势

场和外电场作用的综合效果。但是,要找出内部势场的具体形式并且求得加速度

遇到一定的困难,引进有效质量后可使问题变得简单,直接把外力f和电子的加

速度联系起来,而内部势场的作用则由有效质量加以概括。因此,引进有效质量

的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作

用下的运动运动规律时,可以不涉及到半导体内部势场的作用。特别是mn*可以

直接由实验测定,因而可以很方便地解决电子的运动规律。在能带底部附近,

d2E/dk2>0,电子的有效质量是正值;

在能带顶附近,d2E/dk20,数值上与该处的电子有效质量相同,即=一>0,

空穴带电荷+q。

③空穴的能量坐标与电子的相反,分布也服从能量最小原理。

13、本征半导体的导电机构:对本征半导体,导带中出现多少电子,价带

中就对应出现多少空穴,导带上电子参与导电,价带上空穴也参与导电,这就是

本征半导体的导电机构。这一点是半导体同金属的最大差异,金属中只有电子一

种荷载电流的粕子(称为载流子),而半导体中有电子和空穴两种载流子°正是

由于这两种载流子的作用,使半导体表现出许多奇异的特性,可用来制造形形色

色的器件。

14、回旋共振的实验发现,硅、褚电子有效质量各向异性,说明其等能面

各向异性。通过分析,在有六个椭球等能面,分别分布在晶向的六个等效晶轴上,

电子主要分布在这六个椭球的中心(极值)附近。仅从回旋共振的实验还不能决

定导带极值(椭球中心)的确定位置。通过施主电子自旋共振熨验得出,硅的导

带极值位于方向的布生渊区边界的0.85倍处。

15、n型错的实验指出,错的导电极小值位于方向的布里渊区边界上共有八

个。极值附近等能面为沿方向旋转的八个椭球面;每个椭球面有半个在布里渊区,

因此,在简约布里渊区共有四个椭球。

16、硅和错的价带结构:有三条价带,其中有两条价带的极值在k=0处重

合,有两种空穴有效质量与之对应,分别为重空穴和轻空穴,还有第三个价带,

其带顶比前两个价带降低了,对于硅,=0.04ev,对于镭=0.29ev,这条价带给

出了第三种空穴。空穴重要分布在前两个价带。在价带顶附近,等能面接近平面。

17、神化绿的能带结构:导带极小值位于布里渊区中心k=0处,等能面为

球面,导带底电子有效质量为0.067。在方向布里渊区边界还有一个导带极小值,

极值附近的曲线的曲率比较小,所以此处电子有效质量比较大,约为0.55,它

4、金刚石结构的第一布里渊区是一个十四面体,(见教材图1—11),要注

意图中特殊点的位置。

5、有效质量的意义:引入有效质量后,电子的运动可用牛顿第二定律描述,

a=f/mn*o注意,这是一个经典力学方程,f是外合力。半导体中的电子除了外

力作用外,还受到半导体内部原子及其它电子势场力的作用,这种作用隐含在有

效质量中,这就使得在解决半导体中电子在外力作用下的运动规律时,可以不涉

及半导体内部势场的作用。

6、价带电子导电通常用空穴导电来描述。实践证明,这样做是十分方便的。

但是,如何理解空穴导电?设想价带中一个电子被激发到价带,此时价带为不满

带,价带中电子便可导电。设电子电流密度密度为J,则:J=价带(k状态空出)

电子总电流可以用下述方法计算出J的值。设想以一个电子填充到空的k状态,

这个电子的电流等于电子电荷F乘以k状态电子的速度v(k),即k状态电子电

流=(-q)v(k)填入这个电子后,价带又被填满,总电流应为零,即J+(-q)

v(k)=0因而得到1=(+q)v(k)这就是说,当价带k状态空出时,价带电

子的总电流,就如同一个正电荷的粒子以k状态电子速度v(k)运动时所产生

的电流。因此,通常把价带中空着的状态看成是带正电的粒子,称为空穴。引进

这样一个假象的粒子一一空穴后,便可以很简便地描述价带(未填满)的电流。

7、回旋共振原理及条件。

8、对E(k)表达式和回旋共振实验有效质量表达式的处理。在k空间合理

的选取坐标系,可是问题得到简化。如选取为能量零点,以为坐标原点,取、、

为三个直角坐标轴,分别与椭球主轴重合,并使轴沿椭球长轴方向(即沿方向),

则等能面分别为绕轴旋转的旋转椭球面。E(k)表达式简化为E(k)=;

如果、轴选取恰当,计算可简单,选取使磁感应强度B位于轴和轴所组成

的平面内,且同轴交角,则在这个坐标系里,B的方向氽弦、、分别为=siu,=

0,=coso

本章基本概念及名词术语:

1、原胞和晶胞:都是用来描述晶体中晶格周期性的最小重复单元,但二者

有所不同。在固体物理学中,原胞只强调晶格的周期性;

而在结晶学中,晶胞还要强调晶格中原子分布的对称性。

2、电子的共有化运动:原子组成晶体后,由于原子壳层的交叠,电子不再

局限在某一个原子上,可以由一个原子转移到另一个原子上去,因而,电子将可

以在整个晶体中运动,这种运动称为电子的共有化运动。但须注意,因为各原子

中相似壳层上的电子才有相同的能量,电子只能在相似壳层中转移。

3、能带产生的原因:

定性理论(物理概念):晶体中原子之间的相互作用,使能级分裂形成能带

定量理论(量子力学计算):电子在周期场中运动,其能量不连续形成能带。

能带(energyband)包括允带和禁带。

允带(allowedband):允许电子能量存在的能量范围。

禁带(forbiddcnband):不允许电子存在的能量范围。

允带又分为空带、满带、导带、价带。

空带(pmpt.yhand):不被电子占据的允带c

满带(filledband):允带中的能量状态(能级)均被电子占据。

导带(conductionband):电子未占满的允带(有部分电子。)价带

(valenceband):被价电子占据的允带(低温下通常被价电子占满)。

4、用能带理论解释导体、半导体、绝缘体的导电性:

固体按其导电性分为导体、半导体、绝缘体,其机理可以根据电子填充能

带的情况来说明。

固体能够导电,是固体中的电子在外场的作用下定向运动的结果。由于电

场力对电子的加速作用,使电子的运动速度和能量都发生了变化。换言之,即电

子与外电场间发生能量交换。从能带论来看,电子的能量变化,就是电子从一个

能级跃迁到另一个能级上去。对于满带,其中的能级已被电子所占满,在外电场

作用下,满带中的电子并不形成电流,对导电没有贡献,通常原子中的内层电子

都是占据满带中的能级,因而内层电子对导电没有贡献。对丁被电子部分占满的

能带,在外电场作用下,电子可从外电场中吸收能量跃迁到未被电子占据的的能

级去,起导电作用,常称这种能带为导带。金属中,由于组成金属的原子中的价

电子占据的能带是部分占满的,所以金属是良好的导电体。

半导体和绝缘体的能带类似,即下面是已被价电子占满的满带(其下面还

有为内层电子占满的若干满带),亦称价带,中间为禁带,上面是空带。因此,

在外电场作用下并不导电,但是这只是绝对温度为零时的情况。当外界条件发生

变化时,例如温度升高或有光照时,满带中有少量电子可能被激发到上面的看到

中去,使能带底部附近有了少量电子,因而在外电场作用下,这些电子将参与导

电;

同时,满带中由于少了一些电子,在满带顶部附近出现了一些空的量子状

态,满带变成了部分占满的能带,在外电场作用下,仍留在满带中的电子也能够

起导电作用,满带电子的这种导电作用等效于把这些空的量子状态看作带正电荷

的准粒子的导电作用,常称这些空的量子状态为空穴。所以在半导体中导带的电

子和价带的空穴参与导电,这是与金属导体的最大差别。绝缘体的禁带宽度很大,

激发电子需要很大的能量,在通常温度下,能激发到导带中的电子很少,所以导

电性很差。半导体禁带宽度比较小,数量级在leV左右,在通常温度下已有不少

电子被激发到导带中去,所以具有一定的导电能力,这是绝Z彖体和半导体的主要

区别。室温下,金刚石的禁带宽度为6〜7eV,它是绝缘体;

硅为1.12eV,错为0.67eV,碎化钱为1.43eV,所以它们都是半导体。

5、半导体中电子的准动量:经典意义上的动量是惯性质量与速度的乘积,

即v。根据教材式(1T)和式(1T0),对于自由电子v=hk,这是自由电子的

真实动量,而在半导体中hk=v;

有效质量与惯性质量有质的区别,前者隐含了晶格势场的作用(虽然有质

量的量纲)。因为V与V具有相同的形式,因此称V为准动量。

6、本征激发:共价键上的电子激发成为准自由电子,亦即价带电子吸收能

量被激发到导带成为导带电子的过程,称为本征激发。这一概念今后经常用到。

7、载流子:晶体中荷载电流(或传导电流)的粒子。金属中为电子,半导

体中有两种载流子即电子和空穴,而影响半导体导电性的主要是导带电子和价带

空穴。

8、回旋共振实验:目的是测量电子的有效质量,以便采用理论与实验相结

合的方法推出半导体的能带结构。为能观测出明显的共振吸收峰,就要求样品纯

度要高,而且实验一般在低温下进行,交变电磁场的频率在微波甚至在红外光的

范围。实验中常是固定交变电磁场的频率,改变磁感应强度以观测吸收现象。磁

感应强度约为零点几T。等能面的形状与有效质量密切相关,对于球形等能面,

有效质量各向同性,即只有一个有效质量;

对于椭球等能面,有效质量各向异性,即在不同的波矢方向对应不同的有

效质量。

9、横向有效质量沿椭球短轴方向,纵向有效质量沿椭球长轴方向。

10、直接带隙半导体是指导带极小值与价带极大值对应同一波矢;

间接带隙半导体是指导带极小值与价带极大值对应不同的波矢。

本章要求掌握的内容及考点:一一本章要求熟练掌握基本的物理原理和概

念一一考题主要涉及填空、名词解释和简答题(物理过程的解释)1、以上基本

概念和名词术语的解释。

2、熟悉金刚石型结构与闪锌矿型结构晶胞原子的空间立体分布及硅、褚、

碎化线晶体结构特点,晶格常数,原子密度数量级(1022个原子/立方厘米)。

3、掌握能带形成的原因及电子共有化运动的特点:

掌握实际半导体的能带的特点。

4、掌握有效质量的意义及计算公式,速度的计算方法,正确理解半导体中

电子的加速度与外力及有效质量的关系,正确理解准动量及其计算方法,准动量

的变化量应为。

5、掌握半导体的导电机构,正确理解空穴的导电机理。

6、学握硅、铭、神化钱的能带结构,注意它们导带底和价带顶所处的位置。

7、已留的课后作业题。

第二章半导体中的杂质和缺陷能级本章各节内容提要:

理想半导体:1、原子严格地周期性排列,晶体具有完整的晶格结构。2、

晶体中无杂质,无缺陷。3电子在周期场中作共有化运动,形成允带和禁带一一

电子能量只能处在允带中的能级上,禁带中无能级。由本征激发提供载流子。如

果晶体具有完整的(完美的)晶格结构,无任何杂质和缺陷一一本征半导体。(纯

净半导体中,Ef的位置和载流子的浓度只是由材料本身的本征性质决定的)实

际材料中,1、总是有杂质、缺陷,使周期场破坏,在杂质或缺陷周围引起局部

性的量子态一一对应的能级常常处在禁带中,对半导体的性质起着决定性的影

响。2、杂质电离提供我流子。本章重点介绍半导体中主要的杂质和缺陷及其能

级。

在2.1节,介绍硅、偌中的浅能级和深能级杂质以及和杂质能级,浅能级

杂质电离能的计算,介绍了杂质补偿作用。

在2.2节,介绍HI-V族化合物中的杂质能级,引入等电子陷阱、等电子

络合物以及两性杂质的概念。

本章重难点:

重点:

1、在纯净的半导体中掺入一定的杂质,可以显著地控制半导体地导电性质。

根据掺入杂质地分布位置可以分为替位式杂质和受主杂质。

2、施主杂质电离后成为不可移动的带正电的施主离子,同时向导带提供电

子,使半导体成为电子导电的n型半导体。受主杂质电离后成为不可移动的带负

电的受主离子,同时向价带提供空穴,使半导体成为空穴导电的p型半导体。

3、杂质元素掺入半导体后,由于在晶格势场中引入微扰,使能带极值附近

出现分立的能级一一杂质能级。V族元素在靠近导带底的禁带中引入施主能级,

山族元素在靠近价带顶的禁带中引入受主能级。类氢模型对浅能级的位置给出了

比较满意的定量描述。经过修正后,施主杂质的电离能和轨道半径可表示为:

,;

受主杂质的电离能可表示为:式中,为氢原子的基态电离能;

为晶体的相对介电常数。

4、施主杂质和受主杂质有相互抵消作用,逍常称为“杂质补偿”。“杂质

补偿”是制造各种半导体器件的基础。

5、非川、V族杂质元素在半导体中也可能会产生深能级或多能级。

6、例如:金Au在硅中电离后产生两个能级,一个在价带上面0.35ev处的

施主能级,它在P型硅中起主要作用。另一个在导带下面0.54ev处的受主能级,

它在u型硅中起主要作用。

7、深能级杂质和晶体缺陷形成的能级一般作为复合中心。

8、四族元素硅在li巾化钱中的双性行为,即硅的浓度较低时主要起施主杂质

作用,当硅的浓度较高时,一部分硅原子将起到受主杂质作用。这种双性行为可

作如下解释:实验测得硅在碎化线中引入一浅施主能级(-0.002)ev,硅应起

施主作用,那么当硅杂质电离后,每一个硅原子向导带提供一个导电电子,导带

中的电子浓度应随硅杂质浓度的增加而线性增加。但是实验表明,当硅杂质浓度

上升到一定程度之后,导带电子浓度趋向饱和,施主杂质的有效浓度降低了。这

种现象出现,是因为硅杂质浓度较高时,硅原子不仅取代钱原子起着受主杂质的

作用,而且硅也取代了一部分V族碑原子而起着受主杂质的作用,因而对于取代

in族原子钱的硅施主杂质起到补偿作用,从而降低了有效施主杂质的浓度,电子

浓度趋于饱和。可见,在这个粒子中,硅杂质的总效果是起施主作用,保持神化

钱为n型半导体。实验还表明,碎化线单晶体中硅杂质浓度为时,取代铁原子的

硅施主浓度与取代碑原子的硅受主浓度之比约为5.3:1。硅取代碑所产生受主能

级在()ev处。

9、点缺陷和位错对半导体性能的影响难点:

1、用类氢模型计算浅能级杂质的电离能;

解释金在铭中产生多重能级的原因:金是I族元素,中性金原子(记为)

只有一个价电子,它取代错晶格中的一个错原子而位于晶格点上。金比错少三个

价电子,中性金原子的这一个价电子,可以电离而跃迁入导带,这一施主能级为,

因此,电离能为()。因为金的这个价电子被共价键所束缚,电离能很大,略小

于褚的禁带宽度,所以,这个施主能级靠近价带顶。电离以后,中性金原子接受

就称为带一个电子电荷的正电中心。但是,另一方面,中性金原子还可以和周围

的四个铭原子形成共价键,在形成共价键时,它可以从价带接受三个电子,形成、、

三个受主能级。金原子接受第一个电子后变为,相应的受主能级为,其电离能为

(-)。接受第二个电子后,变为,相应的受主能级为,其电离能为(-)o接受第

三个电子后,变为,相应的受主能级为,其电离能为(-)。上述的、、分别表示

成为带一个、两个、三个电子电荷的负电中心。由于电子间的库仑排斥作用,金

从价带接受第二个电子所需要的电离能比接受第一个电子时的大,接受第三个电

子时的电离能又比接受第二个电子时的大,所以,»o离价带顶相对近一些,但

是比m族杂质引入的浅能级还是深得多,更深,就儿乎靠近导带底了。于是金在

错中一共有、、、、五种荷电状态,相应地存在着、、、四个孤立能级,它们都是深

能级。以上的分析方法,也可以用来说明其它一些在硅、错中形成深能级的杂质,

基本上与实验情况相一致。

本章基本概念及名词术语:

施主杂质(n型杂质):杂质电离后能够施放电子而产生自由电子并形成正

电中心的杂质——施主杂质。

施主杂质电离能:杂质价电子挣脱杂质原子的束缚成为自由电子所需要的

能量一一杂质电离能,用EDi表示。

正电中心:施主电离后的正离子一一正电中心施主能级ED:施主电子被施

主杂质束缚时的能量而应的能级称为施主能级。对于电离能小的施主杂质的施主

能级位于禁带中导带底以下较小底距离。

受主杂质:能够向(晶体)半导体提供空穴并形成负电中心底杂质一一受

主杂质受主杂质电离能EAi:空穴挣脱受主杂质克缚成为导电空穴所需的能量。

受主能级EA:空穴被受主杂质束缚时的能量状态对应的能级。

浅能级杂质:电离能小的杂质称为浅能级杂质。所谓浅能级,是指施主能

级靠近导带底,受主能级靠近价带顶.室温下,掺杂浓度不很高底情况下,浅能

级杂质几乎可以可以全部电离。五价元素磷(P)、睇(Sb)在硅、错中是浅受主

杂质,三价元素硼(B)、铝(A1)、像(Ga)、钢(In)在硅、褚中为浅受主杂质。

杂质补偿:半导体中存在施主杂质和受主杂质时,它们底共同作用会使我

流子减少,这种作用称为杂质补偿。在制造半导体器件底过程中,通过采用杂质

补偿底方法来改变半导体某个区域底导电类型或电阻率。

高度补偿:若施主杂质浓度与受主杂质浓度相差不大或二者相等,则不能

提供电子或空穴,这种情况称为杂质的高等补偿。这种材料容易被误认为高纯度

半导体,实际上含杂质很多,性能很差,一般不能用来制造半导体器件。

深能级杂质:杂质电离能大,施主能级远离导带底,受主能级远离价带顶。

深能级杂质有三人基本特点:一是不容易电离,对载流子浓度影响不大;

二是一般会产生多重能级,甚至既产生施主能级也产生受主能级。三是能

起到复合中心作用,使少数载流子寿命降低(在第五章详细讨论)。四是深能级

杂质电离后以为带电中心,对载流子起散射作用,使载流子迁移率减少,导电性

能下降。

等电子陷阱和等离子杂质:在某些化合物半导体中,例如磷化钱中掺入V

族元素氮或钮,氮或饱将取代磷并在禁带中产生能级。这个能级称为等离子陷阱。

这种效应称为等离子杂质效应。所谓等离子杂质是与基质晶体原子具有同数量价

电子的杂质原子,它们替代了格点上的同族原子后,基本上仍是电中性的。但是

由于原子序数不同,这些原子的共价半径和电负性有差别,因而它们能俘获某种

载流子而成为带电中心。这个带电中心就称为等离子陷阱。是否周期表中同族元

素均能形成等离子陷阱呢?只有当掺入原子与基质晶体原子在电负性、共价半径

方面有较大差别时,才能形成等离子陷阱。一般说,同族元素原子序数越小,电

负性越大,共价半径越小。等电子杂质电负性大于基质晶体原子的电负性时,取

代后,它便能俘获电子成为负电中心。反之,它能俘获空穴成为正电中心。例如,

氮的共价半径和电负性分别为0.070nm和3.0,磷的共价半径和电负性分别为

0.UOnm和2.1,氮取代磷后能俘获电子成为负电中心。这个俘获中心称为等离

子陷阱。这个电子的电离能AED=O.008cVo例的共价半径和负电性分别为

0.146nmff1.9,秘取代磷后能俘获空穴,它的电离能是△EA=O.038eV。

本章要求掌握的内容及考点:一一本章主要在于对各种概念的理解和掌握

一一考题主要涉及填空题、名词解释1、以上基石概念和名词术语的解释。

2、掌握浅能级杂质和深能级杂质的基本特点和在半导体中起的作用。

3、掌握等电子陷阱和等离子杂质的概念。能解释硅在碑化线中的双性行为。

4、掌握点缺陷和位错缺陷对半导体性能的影响。

5、已留的课后作业第三章半导体中载流子的统计分布本章内容提要:

1、本章的主要任务:计算本征半导体和杂质半导体的热平衡载流子浓度及

费米能级的位置,讨论nO、p0、EF与ND、NA、T的关系。

2、热平衡和热平衡载流子:在一定温度下,如果没有其它外界作用半导体

中的导电电子和空穴是依靠电子的热激发作用而产生的,电子从不断热震动的晶

格中获得一定的能量,就可能从低能量的量子态跃迁到高能量的量子态,例如,

电子从价带跃迁到导带(这就是本征激发),形成导电电子和价带空穴。电子和

空穴也可以通过杂质电离方式产生,当电子从施主能级跃辽到导带时产生导带电

子;

当电子从价带激发到受主能级时产生价带空穴等。与此同时,还存在着相

反的过程,即电子也可以从高能量的量子态跃迁到低能量的量子态,并向品格放

出一定能量,从而使导带中的电子和价带中的空穴不断减少,这一过程称为我流

子的复合。在一定温度下,这两个相反的过程之间将建立起动态的平衡,称为热

平衡状态。这时,半导体中的导电电子浓度和空穴浓度都保持一个稳定的数值,

这种处于热平衡状态下的导电电子和空穴称为热平衡载流子。当温度改变时,破

坏了原来的平衡状态,又重新建立起新的平衡状态,热平衡载流子的浓度也将发

生变化,达到另一稳定数值。

3、解决问题的思路:热平衡是一种动态平衡,载流子在各个能级之间跃迁,

但它们在每个能级上出现的几率是不同的。

要讨论热平衡载流子的统计分布,是首先要解决下述问题:

①允许的量子态按能量的分布情况一一状态密度;

②电子在允许的量子态中符合分布——分布函数。

然后讨论nO、pO、EF与ND、NA、的关系。

本章重难点:

重点:

1、为计算电子和空穴的浓度,必须对一个能带内的所有能量积分,而不只

是对布里渊区体积积分,为此引入状态密度概念即单位能量间隔内的量子态数。

表达式为:。可通过下述步骤计算状态密度:首先算出单位k空间中的量子态数,

即k空间中的状态密度;

然后算出k空间中与能量E到E+dE间所对应的k空间体积,并和k空间

中的状态密度相乘,从而求得在能量E到E+dE间的量子态数dE;

最后,根据前式,求得状态密度g(E)o

2、费米分布函数的意义:它表示能量为E的量子态被一个电子占据的几率,

它是描写热平衡状态下电子在允许的量子态上如何分布的一个统计分布函数;

费米分布函数还给出空穴占据各能级的几率,一个能级要么被电子占据,

否则就是空的,即被空穴占据,3、与对称于可以证明:

这对研究电子和空穴的分布很方便。

4、费米分布函数与波耳兹曼分布函数的关系:

当时,电子的费米分布函数转化为波耳兹曼分布函数。因为对于热平衡系

统和温度为定值,则,这就是通常见到的波耳兹曼分布函数。

同理,当时,空穴的费米分布函数转化为空穴的波耳兹曼分布函数。在半

导体中,最常遇到的情况是费米能级位于价带内,而且与导带底或价带顶的距离

远大于,所以,对导带中的所有量子态来说,被电子占据的几率,一般都满足,

故半导体电子中的电子分布可以用电子的波耳兹曼分布函数描写。由于随着能量

E的增大,f(E)迅速减小,所以导带中绝大多数电子分布在导带底附近。同理,

对半导体价带中的所有量子态来说,被空穴占据的几率,一般都满足,故价带中

的空穴分布服从空穴的波耳兹曼分布函数。由于随着能量E的增大,迅速增大,

所以价带中绝大多数空穴分布在价带顶附近。因而和是讨论半导体问题时常用的

两个公式。通常把服从波耳兹曼统计率的电子系统称为非简并性系统。

5、费米能级:称为费米能级或费米能量,它和温度、半导体材料的导电类

型、杂质的含量以及能量零点的选取有关。是一个很重要的物理参数,只要知道

了的数值,在一定温度下,电子在各量子态上的统计分布就完全确定。它可以由

半导体中能带内所以量子态中被电子占据的量子态数应等于电子总数N这一条

件来决定,即,将半导体中大量电子的集体看成一个热力学系统,由统计理论证

明,费米能级是系统的化学势,即,代表系统的化学势,F式系统的自由能。上

式的意义是:当系统处于热平衡状态,也不对外界做功的情况下,系统中增加一

个电子所引起系统自由能的变化,等于系统的化学势,所以处于热平衡状态的电

子系统有统一的费米能级。一般可以认为,在温度不很高时,能量大于费米能级

的电子态基本上没有被电子占据,而能量小于费米能级的几率在各温度下总是

1/2,所以费米能级的位置比较直观的标志了电子占据量子态的状况,通常就说

费米能级标志了电子填充能级的水平。费米能级位置越高,说明有较多的能量较

高的电子态上有电子。

6、导出导带电子浓度和价带空穴浓度的表达式。理解、掌握电子浓度、空

穴浓度表达式的意义。

7、利用电中性条件(所谓电中性条件,就是电中性的半导体,其负电数与

正电荷相等。因为电子带负电,空穴带正电,所以对本征半导体,电中性条件是

导带中的电子浓度应等于价带中的空穴浓度,即=,由此式可导出费米能级。)

求解本征半导体的费米能级:本征半导体就是没有杂质和缺陷的半导体,在绝对

零度时,价带中的全部量子态都被电子占据,而导带中的量子态全部空着,也就

是说,半导体中共价键是饱和的、完整的。当半导体的温度大于零度时,就有电

子从价带激发到导带中去,同时价带中产生空穴,这就是所谓的本征激发。由于

电子和空穴成对产生,导带中的电子浓度应等于价带中的空穴浓度,即=。

8、本征载流子浓度与温度和价带宽度有关。温度升高时,本征载流子浓度

迅速增加;

不同的半导体材料,在同一温度下,禁带宽度越大,本征载流子浓度越大。

9、一定温度下,任何非简并半导体的热平衡载流子的浓度的乘积对于该温

度时的本征载流子的浓度的平方,即,与所含杂质无关。因此,它不仅适用于本

征半导体材料,而且也适用于非简并的杂质半导体材料。

10、的意义:可伶为判断半导体材料的热平衡条件。热平衡条件下,、均为

常数,则也为常数,这时单位时间单位体积内产生的截流子数等于单位时间单位

体积内复合掉的载流子数,也就是说产生率大于复合率。因此,此式可作为判断

半导体材料是否达到热平衡的依据式。

II、半导体杂质能级被电子占据的几率函数与费米分布函数不同:因为杂

质能级和能带中的能级是有区别的,在能带中的能级可以容纳自旋下凡的两个电

子;

而施主能级只能或者被一个任意自旋方向的电子占据,或者不接受电子(空

的)这两种情况中的一种,即施主能级不允许同时被自旋方向相反的两个电子所

占据。所以不能用费米分布函数表示电子占据杂质能级的几率。

12、分析杂质半导体掺杂浓度和温度对载流子浓度和费米能级的影响,掺

有某种杂质的半导体的载流子浓度和费米能级由温度和杂质浓度所决定。对于杂

质浓度一定的半导体,随着温度的升高,载流子则是从以杂质电离为主要来源过

渡到以本征激发为主要来源的过程,相应地,费米能级则从位于杂质能级附近逐

渐移近禁带中线处。譬如n型半导体,在低温弱电离区时,导带中的电子是从施

主杂质电离产生的;

随着温度升高,导带中的电子浓度也增加,而费米能级则从施主能级以上

往下降到施主能级以下;

当下降到以下若干时,施主杂质全部电离,导带中的电子浓度等于施主浓

度,处于饱和区;

再升高温度,杂质电离已经不能增加电子数,但本征激发产生的电子迅速

增加着,半导体进入过渡区,这是导带中的电子由数量级相近的本征激发部分和

杂质电离部分组成,而费米能级则继续下降;

当温度再升高时,本征激发成为载流子的主要来源,载流子浓度急剧上升,

而费米能级下降到禁带中线处这时就是典型的本征激发。对于P型半导体,作相

似的讨论,在受主浓度一定时,随着温度升高,费米能级从在受主能级以下逐渐

上升到禁带中线处,而载流子则从以受主电离为主要来源转化到以本征激发为主

要来源。当温度一定时,费米能级的位置由杂质浓度所决定,例如n型半导体,

随着施主浓度的增加,费米能级从禁带中线逐渐移向导带底方向。对于p型半导

体,随着受主浓度的增加费米能级从禁带中线逐渐移向价带顶附近。这说明,在

杂质半导体中,费米能级的位置不但反映了半导体导电类型,而且还反映了半导

体的掺杂水平。对于n型半导体,费米能级位于禁带中线以上,越大,费米能级

位置越高。对于P型半导体,费米能级位于中线以下,越大,费米能级位置越低。

13、一般情况下,半导体既含有施主杂质,又含有受主杂质,在热平衡状

态下,电中性方程为,此式的意义是:同时含有一种施主杂质和一种受主杂质情

况下,半导体单位体积内的负电荷数(导带电子浓度与电离受主浓度之和)等于

单位体内的正电荷数(价带空穴浓度与电离施主浓度之和)。

14、施主浓度大于受主浓度情况下,分析载流子浓度和费米能级与温度的

关系。

15、简并半导体的载流子浓度:对于n型半导体,施主浓度很高,使费米

能级接近或进入导带时,导带底附近底量子态基本上已被电子占据,导带中底电

子数目很多,的条件不能成立,必须考虑泡利不相容原理的作用。这时,不能再

用玻耳兹曼分布函数,必须用费米分布函数来分析导带中电子的分布问题。这种

情况称为载流子的简并化。发生载流子简并化的半导体称为基本半导体,对于P

型半导体,其费米能级接近价带顶或进入价带,也必须用费米分布函数来分析价

带中空穴的分布问题。

16、简并时的杂质浓度:对n型半导体,半导体发生简并时,掺杂浓度接

近或大于导带底有效状态密度;

对于杂质电离能小的杂质,则杂质浓度较小时就会发生简并。对于P型半

导体,发生简并的受主浓度接近或大于价带顶有效状态密度,如果受主电离能较

小,受主浓度较小时就会发生简并。对于不同种类的半导体,因导带底有效状态

密度和价带顶有效密度各不相同。一般规律是有效状态密度小的材料,其发生简

并的杂质浓度较小。

难点:

1、能量状态密度与k空间量子态的分布即等能面的形状有关。在k空间量

子态的分布是均匀的,量子态的密度为V(立方晶体的体积)。如果计入自旋,

每个量子态可以允许两个自旋相反的电子占据一个量子态。换言之,k空间每个

量子态实际上代表自旋方向相反的两个量子态,所以,在k空间,电子允许的量

子态密度为2Vo注意;这时每个量子态最多容纳一个电子。这样,与费米分布

函数的定义就统一起来了(费米分布函数是能量为E的一个量子态被一个电子占

据的几率)。

2、状态密度表达式的推导过程作为课堂讨论的课程重点内容之一。

3、导出导带电子浓度的基本思路是:和计算状态密度是一样,认为能带中

的能级是连续分布的,将能带分成一个个很小的能量间隔来处理。对导带分为无

限多的无限小的能量间隔,则在能量到之间有个量子态,而电子占据能量为的量

子态的几率是,则在到间有个被电子占据的量子态,因为每个被占据的量子态上

有一个电子,所以在到间有个电子。然后把所有能量区间中的电子数相加,实际

上是从导带底到导带顶对进行积分,就得到了能带中底电子总数,再除以半导体

体积就得到了导带中的电子浓度。因为费米能级一般在禁带中,导带中的能级远

高于费米能级,即当时,计算导带电子浓度可用玻耳兹曼分布函数。

4、本征半导体中导带电子浓度等于价带空穴浓度,根据载流子的分布函数

及费米年间的意义可知:本征半导体的费米能级应该位于导带底和价带顶之间的

中间位置,即禁带中央处。只有这样,导带电子和价带空穴才能对称于费米能级,

分布在导带和价带中,以满足但是由于导带有效状态密度()和价带有效状

态密度()中分别含有电子状态浓度的有效质量()和价带空穴状态有效密度()。

由于两者数值上的差异,使本征半导体的费米能级偏离禁带中央。如果费米能级

偏离禁带中很小,可以认为费米能级基本上位于禁带中央;

如果和相差很大,本征半导体的费米能级就会偏离禁带中央很远。具体情

况可用本征半导体费米能级表达式分析(见课后第6题)5、根据电中性方程导出

各个温度区间的费米能级和载流子浓度表达式。

6、杂质电离程度与温度、掺杂浓度及杂质电离能有关,温度高、电离能小,

有利于杂质电离。但杂质浓度过高,则杂质不能充分电离。通常所说的室温卜.杂

质全部电离,实际上忽略了杂质浓度的限制。

7、在不同的温度区间分析载流子密度和费米能级与温度的关系温度区诃的

划分不是我们传统意义的以温度的数值范围来划分,而是通过相关参量的比较,

把要讨论的整个温度范围划分为极低温区(弱电离)、低温区(杂质电离)……

本征激发区。

8、注意两个电中性方程的适用条件:杂质全部电离,本征激发可以忽略,

即时,电中性方程为,(原始方程为)。杂质全部电离,本征激发不能忽略即掺杂

浓度与的数值相近,或由于温度升高使数值增大而导致与相近时,电中性方程(原

始方程,式中,)。

使用上述两个电中性方程时,关键要判断是否要考虑本征激发对电中性方

程的影响。

9、导体发生简并对应一个温度范围:用图解的方法可以求出半导体发生简

并时,对应一个温度范围。这个温度范围的大小与发生简并时的杂质浓度及杂质

电离能有关:电离能一定时,杂质浓度越大,发生简并的温度范围越大;

发生简并的杂质浓度一定时,杂质电离能越小,简并温度范围越大。

本章基本物理概念和问题:

费米分布函数、波尔兹曼分布函数、k空间状态密度和能量状态密度的概念。

电子浓度和空穴浓度的乘积与费米能级无关。对一定的半导体材料,乘积

只决定于温度,与所含杂质无关。而在一定温度下,对不同的半导体材料•,囚禁

带宽度不同,乘积也将不同。这个关系式不论是本征半导体还是杂质半导体,只

要是热平衡状态下的非简并半导体,都普遍适用,在讨论许多许多实际问题时常

常引用。对一定的半导体材料,在一定的温度下,乘积时一定的。换言之,当半

导体处于热平衡状态时,载流子浓度的乘积保持恒定,如果电子浓度增加,空穴

浓度就要减小;

反之亦然。式和式是热平衡载流子浓度的普遍表示式。只要确定了费米能

级,在一定温度时,半导体导带中电子浓度、价带中空穴浓度就可以计算出来。

半导体材料制成的器件都有一定的极限工作温度,这个工作温度受本征载

流子浓度制约:一般半导体器件中,载流子主要来源于杂质电离,而将本征激发

忽略不计。在本征载流子浓度没有超过杂质电离所提供的载流子浓度的温度范

围,如果杂质全部电离,载流子浓度是一定的,器件就能稳定工作。但是随着温

度的升高,本征载流子浓度迅速地增加。例如在室温附近,纯硅的温度每升高

8K左右,本征载流子的浓度就增加约一倍。而纯错的温度每升高12K左右,本

征载流子的浓度就增加约一倍。当温度足够高时,本征激发占主要地位,器件将

不能正常工作。因此,每一种半导体材料制成的器件都有一定的极限工作温度,

超过这一温度后,器件就失效了。例如,一般硅平面管采用室温电阻率为1・cni

左右的原材料,它是由掺入的施主杂质锚而制成的。在保持载流子主要来源于杂

质电离时.,要求本征载流子浓度至少比杂质浓度低一个数量级,即不超过。如果

也以本征载流子浓度不超过的话,对应温度为526K,所以硅器件的极限工作温

度是520K左右.倍的禁带宽度比硅小,铭的器件丁作温度比硅低,约为370K

左右。碎化钱禁带宽度比硅大,极限工作温度可高达720K左右,适宜于制造大

功率器件。

总之,由于本征我流子浓度随温度的迅速变化,用本征材料制作的器件性

能很不稳定,所以制造半导体器件一般都用含有适当杂质的半导体材料。

多数载流子和少数载流子(多子和少子):当导体中载流子为电子和空穴,

n型半导体以电子导电为主,电子浓度远大于空穴浓度,故称电子为n型半导体

的多数载流子,简称多子,空穴为n型半导体的少数载流子,简称少子;

对于p型半导体,空穴为多子,电子为少子。平衡少子浓度正比于本征载

流子浓度的平方,对于n型半导体,由可得少子浓度,它强烈的依赖于温度的变

化。

简并半导体中杂质不能充分电离:通过分析计算,室温下n型硅掺磷,发

生简并的杂质浓度,经计算,电离施主浓度,硅中只有&4%的杂质是电离的,

故导带电子浓度。尽管只有8.4%的杂质电离,但掺杂浓度较大,所以电子浓度

还是较大。简并半导体中杂质不能充分电离的原因:简并半导体电子浓度较高,

费米能级较低掺杂时,远在施主能级之上,使杂质电离程度降低。

简并化条件:简并化条件是人们的一个约定,把与的相对位置作为区分简

并化与非简并化的标准,一般约定:

,非简并,弱简并,简并注意:在做习题时,首先要判断题目中给出的半导

体材料是否发生弱简并或简并。然后才能确定采用相应的有关公式进行解题。

本章要求掌握的内容及考点:一一本章是本课程的核心知识章节之一,不

仅要求掌握基本物理概念和原理,还要求能进行相关参数的计算一一考题涉及所

有题型(必有一道相关的计算题)1、以上基本物理概念和问题的理解掌握。

2、掌握费米分布函数和玻耳兹曼分布函数及费米能级的意义。费米能级是

一个参考能级,不是电子的真实能级,费米能级的位置标志了电子填充能级的水

平。热平衡条件下费米能级为定值,费米能级的数值与温度、半导体材料的导电

类型、杂质浓度及零点的选取有关,它是一个很重要的物理参数。

3、掌握导带电子浓度和价带空穴浓度公式:

2、,3、,4、与分别是导带与价带底有效状态密度,相当于把导带中所有量

子态都集中在导带底,而它的状态密度为:

同理,相当于把价带中所有量子态都集中在价带顶,而它的状态密度为。

上两式中的指数部分是具有玻耳兹曼分布函数形式的几率函数,前者是电子占据

能量为的量子态几率,后者是空穴占据能量为的量子态的几率。则导带中的电子

浓度是中电子占据的量子态数,价带空穴浓度是中有空穴占据的量子态数。

5、能够写出本征半导体的电中性方程;

熟悉半导体半导体载流子浓度与温度和禁带宽度的关系;

正确使用热平衡判断式。经常用到的数据最好要记住。例如,300K时硅、

错、碑化钱的禁带宽度分别为L12ev,0.67ev,1.428evo本征载流子浓度分别

为、、均为实验值。

6、能够写出只掺杂一种杂质的半导体的一般性电中性方程,若只有施主杂

质时,为,若只有受主杂质时为。本征激发可以忽略的情况下,例如室温区,电

中性条件为;

温度较高,杂质全部电离,本征激发不能忽略时,电中性条件为,在这种

情况下,应和联立可解出和。

7、在掺杂浓度一定地情况下,能够解释多子浓度随温度地变化关系(如教

材图3T1的解释)。在一定的温度和掺杂浓度条件下,判断半导体所处的温度区

域,并计算出载流子浓度和费米能级位置。

8、掌握半导体同时含有施主杂质和受主杂质情况下电中性方程的一般表达

式,能较熟练地分析和计算补偿型半导体的载流了浓度和费米能级。

9、对简并化半导体有最基本的认识,其主要特点是掺杂浓度高,使费米能

级接近或进入导带或价带。能够熟练使用简并化条件。

第四章半导体的导电性本章内容提要:

本章主要讨论载流子的运动规律(载流子的输运现象)、载流子在电场中的

漂移运动、迁移率、电导率、散射机构及强电场效应。

本章重难点:

重点:

1、微分欧姆定律:在半导体中,常遇到电流分布不均匀的情况,即流过不

同截面的电流强度不相等。所以,通常用电流密度来描述半导体中的电流。电流

密度是指通过垂直于电流方向的单位面积的电流,根据熟知的欧姆定律可以得到

电流密度。它把通过半导体中某一点的电流密度和该处的电导率及电场强度直接

联系起来,称为欧姆定律的微分形式。

2、漂移速度和迁移率:有外加电压时,导体内部的自由电子受到电场力的

作用,沿着电场的反方向作定向运动构成电流。电子在电场力的作用下的这种运

动称为漂移运动,定向运动的速度称为漂移速度。迁移率为单位场强下电子的平

均漂移速度。因为电子带负电,所以电子的平均漂移速度的方向一般应和电场强

度方向相反,但习惯上迁移率只取正值。

3、电离杂质散射:施主杂质电离后是一个带正电的离子,受主杂质电离后

是一个带负电的离子。在电离施主或受主周围形成一个库仑势场。这一库仑势场

局部地破坏了杂质附近地周期性势场,它就是使载流子散射地附加势场。当我流

子运动到电离杂质附近时,由于库仑势场地作用,就使载流子运动地方向发生改

变。电离施主和电离受主对电子和空穴散射,它们在散射过程中的轨迹是以施主

或受主为一个焦点的双曲线。常以散射几率P来描述散射地强弱,它代表单位时

间内一个载流子受到散射的次数。具体的分析发现,浓度为的电离杂质对载流子

的散射几率与温度的关系为:。

4、晶格散射:晶格散射主要是长纵声学波和长纵光学波。长纵声学波传播

时荷气体中的声波类似,会造成原子分布的疏密变化,产生体变,即疏处体积膨

胀,密处压缩,如图4-10(a)所示。在一个波长中,一半处于压缩状态,

半处于膨胀状态,这种体变表示原子间距的减小或增大。由第一章知道,禁带宽

度随原子间距变化,疏处禁带宽度减小,密度增大,使能带结构发生波形起伏。

禁带宽带的改变反映出导带底和价带顶的升高和降低,引起能带极值的改变。这

时,同是处于导带底和价带顶的电子或空穴,在半导体的不同地点,其能量就有

差别。所以,纵波引起的能带起伏,就其对载流子的作用讲,如同产生了一个附

加势场,这一附加势场破坏了原来势场的严格周期性,就使电子从K状态散射到

K状态。长纵光学波散射主要发生在离子晶体中。在离子晶体中,每个原胞内由

正负两个离子,它们和纵声学波一样,形成疏密相间的区域。由于正负离子位移

相反,所以,正离子的密区和负离子的疏区相合,正离子的疏区和负离子的密区

相合,从而造成在一半个波长区域内带正电,另一半个波长区域内带负电,带正

负电的区域将产生电场,对载流子增加了一个势场的作用,这个势场就是引起载

流子散射的附加势场。

5、平均自由时间和散射几率的关系:载流子在电场中作漂移运动时,只有

在连续两次散射之间的时间内才作加速运动,这段时间称为自由时间。自由时间

长短不一,若取极多次而求得其平均值则称为载流子的平均自由时间,它与散射

几率互为倒数的关系。

6、迁移率与平均自由时间和有效质量的关系:通过计算外电场作用下我流

子的平均漂移速度,空于有效质量各向同性的电子和空穴,其迁移率分别为和。

对等能面为旋转桶球的多极值半导体,因为沿晶体的不同方向有效质量不

同,所以迁移率与有效质量的关系稍复杂些。例如对于硅:

称为电导迁移率,其值由三个主轴方向的三个迁移率的线性组合,即,称

为电导有效质量,由下式决定:

辽移率与杂质浓度和温度的关系:

对掺杂的硅、错当导体,主要散射机构是电离杂质散射和声学波散射。

电离杂质散射特点是随温度升高,迁移率增大,随电离杂质增加迁移率减

小;

声学波散射特点是随温度升高迁移率下降。同时存在这两种散射机构时,

就要考虑它们的共同作用对迁移率的影响。当掺杂浓度较低时,可以忽略电离杂

质的影响。迁移率主要受晶格散射影响,即随温度升高迁移率下降;

当掺杂浓度较高时,低温时晶格振动较弱,晶格振动散射比电离杂质散射

作用弱,主要是电离杂质散射,所以随温度升高迁移率缓慢增大;

当温度较高时,随温度升高,晶格振动加剧,晶格散射作用,所以高温时

迁移率随温度升高而降低。

8、电阻率决定于载流子的浓度和迁移率,基本表示式如下:

当半导体中电子浓度远大于空穴浓度时,n型半导体,电子浓度远大于空穴

浓度时,P型半导体,电子浓度远小于空穴浓度时,本征半导体,电子浓度等于

空穴浓度时,电阻率与杂质浓度的关系:

轻掺杂时(例如杂质浓度小于),室温下杂质全部电离,载流子浓度近似等

于杂质浓度,而迁移率随杂质浓度地变化不大,与载流子浓度(即杂质浓度)的

变化相比较,可以认为迁移率几乎为常数,所以随杂质浓度升高电阻率下降,若

对电阻率表达式取对数,则电阻率和杂质浓度的关系是线性的。

掺杂浓度较高时(杂质浓度大于),由于室温下杂质不能全部电离,简并半

导体中电离程度下降更多,使我流子浓度小于杂质浓度;

又由于杂质浓度较高时迁移率下降较大。这两个原因使电阻率随杂质浓度

的升高而下降。

本征半导体和杂质半导体的电阻率随温度的变化关系有很大不同:对纯平

导体材料,电阻率主要是由本征载流子浓度决定。随温度上升而急剧增加,室温

附近,温度每增加,硅的本征载流子浓度就增加一倍,因为迁移率只稍有下降,

所以电阻率将相应的降低一半左右;

对褚来说,温度每增加,本征载流子浓度增加一倍,电阻率降低一半,本

征半导体电阻率随温度增加而单调地下降,这是本征半导体区别于金属的一个重

要特征。对杂质半导体由杂质电离和本征激发两个因素存在,又有电离杂质散射

和晶格散射两种散射机构的存在,因而电阻率随温度的变化关系要复杂些。一定

杂质浓度的硅样品的电阻率和温度的关系曲线大致分为三个温度区段:

低温区段温度很低,本征激发可忽略,载流子主要由杂质电离提供,它随

温度升高而增加;

散射主要由杂质电离决定,迁移率也随温度升高而增大,所以,电阻率随

温度升高而下降。

电离饱和区段,温度继续升高(包括室温),杂质已全部电离,本征激发还

不十分显著,载流子基本上不随温度变化,晶格振动散射上升为主要矛盾、迁移

率随温度升高而降低,所以,电阻率随温度升高而增大。

本征激发区段,温度继续升高,本征激发很快增加,大量本征载流子的产

生远远超过迁移率的减小对电阻率的影响,这时,本征激发成为矛盾的主要方面,

杂质半导体的电阻率将随温度的升高而急剧地下降,表现出同本征半导体相似的

特性。

9、定性解释强电场下欧姆定律发生偏离的原因:主要可以从载流子与晶格

振动散射时的能量交换过程来说明。在没有外加电场情况下,载流子和晶格散射

时,强吸收声子或发射声子与晶格交换动量和能量,交换的净能量为零载流子的

平均能量与晶格的相同,两者处于热平衡状态.有电场存在时,载流子从电场中

获得能量,随后乂以发射声子的形式将能量传给晶格,这时,平均的说,载流子

发射的声子数多于吸收的声子数。到达稳定状态时,单位时间载流子从电场中获

得的能量同给予晶格的能量相同。但是,在强电场情况下,载流子从电场中获得

的能量很多,载流子的平均能量比热平衡状态时的大,因而载流子和晶格系统不

再处于热平衡状态。温度是平均动能的量度,既然载流子的能量大于晶格系统的

能量,人们便引进载流子的有效温度来描述语晶格系统不处于热平衡状态的我流

子,并称这种状态的载流子为热载流子。所以,在强电场情况下,载流子温度比

晶格温度高,载流子的平均能量比晶格的大。热载流子与晶格散射时,由于热载

流子能量高,速度大于热平衡状态下的速度,由看出,在平均自由程保持不变得

情况下,平均自由时间减小,因而迁移率降低。当电场不是很强时,载流子主要

和声学波散射,迁移率有所降低。当电场进一步增强,载流子能量高到可以和光

学波声子能量相比时,散射时可以发射光学波声子,丁是载流子获得的能量大部

分又消失,因而平均漂移速度可以达到饱和。

10、耿氏效应:n型神化线两端电极上加以电压。当电压高到某一值时,半

导体电流便以很高频率振荡,这个效应称为耿氏效应。耿氏效应与半导体的能带

结构有关:伸化线导带最低能谷1位于布里渊区中心,在布里渊区边界L处还有

一个能谷2,它比能谷1高出0.29ev。当温度不太高时,电场不太强时,导带电

子大部分位于能谷1。能谷1曲率大,电子有效质量小。能谷2曲率小,电子有

效质量大()。由于能谷2有效质量大,所以能谷2的电子迁移率比能谷1的电

子迁移率小,即.当电场很弱时二电子位于能谷1,平均漂移速度为。当电场很

强时,电子从电场获得较大能量由能谷1跃迁到能谷2,平均漂移速度为,由于,

所以在速场特性上表现为不同的变化速率(实际上和是速场特性的两个斜率。即

低电场时,高电场时)。在迁移率由变化到的过程中经过一个负阻区。在负阻区,

迁移率为负值。这一特性也称为负阻效应。其意义是随着电场强度增大而电流密

度减小。

难点:

1、晶格散射主要是讨论格波与载流子的作用。格波的能量是离子化的,其

能量单元称为声子,当格波能量减少一个能量子(能量单元),就称作放出一个

声子:

增加一个能量子就称吸收一个声子。声子的说法不仅生动地表示出格波能

量的量子化特征,而且在分析晶格与物质作用时很方便。例如,电子在晶体中被

格波散射便可以看作是电子与声子的碰撞。

2、平均自由时间是统计平均值。

3、迁移率与杂质浓度和温度的关系比较复杂,对硅、褚等原子半导体主要

是电离杂质散射和晶格散射,抓住主要矛盾可对实验结果作出较好的解释(可参

考课程重点中的第三条及讲义图4-13的解释)。

4、电阻率与载流子浓度和迁移率有关。在分析电阻率与温度的关系时,要

注意我流子浓度和迁移率都与温度有关。在考虑我流子浓度对电阻率的影响时,

温度对载流子浓度的影响可参考第三章图3—11。

5、平均漂移速度与电场强度的关系:电场较弱时、平均漂移速度与电场强

度成线性关系,即欧姆定律成立;

当电场强度较大时,平均漂移速度按电场强度的二分之一次方增大,却开

始便离欧姆定律;

当电场强度再增大,使电子能量已高到和光学声子能量相比拟时,电子和

晶格散射时便可以发射声学光子。稳态时,平均漂移速度与电场无关,达到饱和。

本章基本物理概念和问题:

1、半导体中的电流是电子电流和空穴电流的总和:一块均匀半导体,两端

加以电压,在半导体内部就形成电场。因为电子带负电,空穴带正电,所以两者

漂移运动的方向不同,电子反电场方向漂移,空穴沿电场方向漂移。但是,形成

的电流都是沿着电场方向。因而,半导体中的导电作用应该是电子导电和空穴导

电的总和。

2、电子迁移率比空穴迁移率大:迁移率数值大小可表示载流子在电场作用

下运动的难易程度,导电的电子是在导带中,它们是脱离了共价键可以在半导体

中自由运动的电子;

而导电的空穴是在禁带中,空穴电流实际上是代表了共价键上的电子在价

键间运动时所产生的电流。显然,在相同的电场作用下,两者的平均漂移速度不

会相同,而且,导带电子平均漂移速度要大些,就是说,电子迁移率与空穴迁移

率不相等,前者要大些C

3、散射几率:表示单位时间内一个载流子受到辐射的次数,其数值与散射

机构有关。

4、单位电场作用下载流子获得的平均漂移速度叫做漂移迁移率。在分析硅

的六个能谷中的电子市电流的贡献时,又引入了电导迁移率,实质上它是漂移迁

移率的线性组合,因此,电导迁移率仍具有漂移迁移率的意义。漂移迁移率可通

过熨验来测量。

5、对于补偿材料,在杂质完全电离情况下,载流子浓度决定于两种杂质浓

度之差,但迁移率决定于两种杂质浓度的总和。如果材料中掺有多种施主杂质和

受主杂质,则迁移率决定于所有电离杂质浓度之和。

6、总迁移率的倒数等于各散射机构迁移率的倒数之和。

7、可以用实验的方法测量半导体样品的电阻率,对于非补偿和轻补偿的材

料,其电阻率可以反映出它的杂质浓度(基本上就是载流子浓度)。对丁高度补

偿的材料,因为载流子浓度很小,电阻率很高,并无真正说明材料很纯,.而是这

种材料杂质很多,迁移率很小,不能用于制造器件。

8、热载流子:在强电场情况下,载流子从电场中获得的能量很多,载流子

的平均能量比热

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论