专题【解析几何】阿基米德三角形极点极线结构及非对称韦达定理与斜率和斜率积有关的定点定值含答案及解析_第1页
专题【解析几何】阿基米德三角形极点极线结构及非对称韦达定理与斜率和斜率积有关的定点定值含答案及解析_第2页
专题【解析几何】阿基米德三角形极点极线结构及非对称韦达定理与斜率和斜率积有关的定点定值含答案及解析_第3页
专题【解析几何】阿基米德三角形极点极线结构及非对称韦达定理与斜率和斜率积有关的定点定值含答案及解析_第4页
专题【解析几何】阿基米德三角形极点极线结构及非对称韦达定理与斜率和斜率积有关的定点定值含答案及解析_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

抛物线阿基米德三角形1.知识要点:如图,假设抛物线方程为,过抛物线准线上一点向抛物线引两条切线,切点分别记为,其坐标为.则以点和两切点围成的三角形中,有如下的常见结论:结论1.直线过抛物线的焦点.证明:参见下面的例1.结论2.直线的方程为.证明:参见下面的例1.也可由极点与极线得到.进一步,设:,则.则,显然由于过焦点,代入可得.我们得到了抛物线焦点弦两端点坐标之间的基本关系.上述结论的逆向也成立,即:结论3.过的直线与抛物线交于两点,以分别为切点做两条切线,则这两条切线的交点的轨迹即为抛物线的准线.证明:过点的切线方程为,过点的切线方程为,两式相除可得:.这就证明了该结论.结论4..证明:由结论3,,.那么.结论5..证明:,则.由抛物线焦点弦的性质可知,代入上式即可得,故.结论6.直线的中点为,则平行于抛物线的对称轴.证明:由结论3的证明可知,过点的切线的交点在抛物线准线上.且的坐标为,显然平行于抛物线的对称轴.(2019年全国三卷)已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.(1)证明:设,,则.又因为,所以.故,整理得.设,同理得.,都满足直线方程.于是直线过点,而两个不同的点确定一条直线,所以直线方程为.即,当时等式恒成立.所以直线恒过定点.(2)由(1)得直线的方程为.由,可得,于是.设分别为点到直线的距离,则.因此,四边形ADBE的面积.设M为线段AB的中点,则,由于,而,与向量平行,所以,解得或.当时,;当时因此,四边形的面积为或.

极点极线结构及非对称韦达定理1.基础知识:极点极线椭圆极点和极线的定义与作图:已知椭圆(a>b>0),则称点和直线为椭圆的一对极点和极线.极点和极线是成对出现的.从定义我们共同思考和讨论几个问题并写下你的思考:(1)若点在椭圆上,则其对应的极线是什么?(2)椭圆的两个焦点对应的极线分别是什么?(3)过椭圆外(上、内)任意一点,如何作出相应的极线?如图,若点在曲线外,过点作两条割线依次交曲线于且与交于,延长交于点,则直线即为点所对应的极线.假设椭圆方程为(1)焦点与准线:点与直线;(2)点与直线2.非对称韦达定理在一元二次方程中,若,设它的两个根分别为,则有根与系数关系:,,借此我们往往能够利用韦达定理来快速处理、、之类的“对称结构”,但有时,我们会遇到涉及的不同系数的代数式的应算,比如求、之类的结构,就相对较难地转化到应用韦达定理来处理了.特别是在圆锥曲线问题中,我们联立直线和圆锥曲线方程,消去x或y,也得到一个一元二次方程,我们就会面临着同样的困难,可采用反过来应用韦达定理,会有较好的作用.3.典例(2020一卷)已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.解析:由椭圆方程可得:,,,,椭圆方程为:(2)证明:设,则直线的方程为:,即:联立直线的方程与椭圆方程可得:,整理得:,解得:或将代入直线可得:所以点的坐标为.同理可得:点的坐标为当时,直线的方程为:,整理可得:整理得:所以直线过定点.当时,直线:,直线过点.故直线CD过定点.4.练习:(2010江苏)在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F.设过点T()的直线TA、TB与椭圆分别交于点M、,其中m>0,.(1)设动点P满足,求点P的轨迹;(2)设,求点T的坐标;(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)解:(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。由,得化简得。故所求点P的轨迹为直线(2)将分别代入椭圆方程,以及得:M(2,)、N(,)直线MTA方程为:,即,直线NTB方程为:,即联立方程组,解得:,所以点T的坐标为(3)点T的坐标为直线MTA方程为:,即,直线NTB方程为:,即分别与椭圆联立方程组,同时考虑到,解得:、(方法1)当时,直线MN方程为:令,解得:。此时必过点D(1,0);当时,直线MN方程为:,与x轴交点为D(1,0)。所以直线MN必过x轴上的一定点D(1,0)。(方法2)若,则由及,得,此时直线MN的方程为,过点D(1,0)若,则,直线MD的斜率,直线ND的斜率,得,所以直线MN过D点。因此,直线MN必过轴上的点(1,0).与斜率和,斜率积有关的定点定值1.基本结论:设为椭圆上的定点,是椭圆上一条动弦,直线的斜率分别为;若,则有,若,则直线过定点,若,则有,若,则直线过定点.典例分析(2017一卷)已知椭圆,四点中恰有三点在椭圆上.(1)求椭圆的方程;(2)设直线不经过点且与相交于两点,若直线的斜率之和为,证明:直线过定点.解析:(1)由于,两点关于y轴对称,故由题设知C经过,两点.又由知,C不经过点P1,所以点P2在C上.因此,解得.故C的方程为.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论