2025届浙江省温州市第五十一中高三最后一模数学试题含解析_第1页
2025届浙江省温州市第五十一中高三最后一模数学试题含解析_第2页
2025届浙江省温州市第五十一中高三最后一模数学试题含解析_第3页
2025届浙江省温州市第五十一中高三最后一模数学试题含解析_第4页
2025届浙江省温州市第五十一中高三最后一模数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省温州市第五十一中高三最后一模数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.由曲线y=x2与曲线y2=x所围成的平面图形的面积为()A.1 B. C. D.2.若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为()A.85 B.84 C.57 D.563.已知实数满足不等式组,则的最小值为()A. B. C. D.4.设过定点的直线与椭圆:交于不同的两点,,若原点在以为直径的圆的外部,则直线的斜率的取值范围为()A. B.C. D.5.已知集合A={y|y},B={x|y=lg(x﹣2x2)},则∁R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)6.已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为()A. B.2 C.4 D.7.已知复数z=(1+2i)(1+ai)(a∈R),若z∈R,则实数a=()A. B. C.2 D.﹣28.已知数列是公比为的正项等比数列,若、满足,则的最小值为()A. B. C. D.9.已知函数,若关于的方程有4个不同的实数根,则实数的取值范围为()A. B. C. D.10.“完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为()A. B. C. D.11.如图所示的程序框图,若输入,,则输出的结果是()A. B. C. D.12.已知,则下列关系正确的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.不等式对于定义域内的任意恒成立,则的取值范围为__________.14.已知,,其中,为正的常数,且,则的值为_______.15.已知是夹角为的两个单位向量,若,,则与的夹角为______.16.已知点是双曲线渐近线上的一点,则双曲线的离心率为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知矩阵,且二阶矩阵M满足AMB,求M的特征值及属于各特征值的一个特征向量.18.(12分)已知集合,集合,.(1)求集合B;(2)记,且集合M中有且仅有一个整数,求实数k的取值范围.19.(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量(件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲;乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数的分布列和数学期望.20.(12分)已知的面积为,且.(1)求角的大小及长的最小值;(2)设为的中点,且,的平分线交于点,求线段的长.21.(12分)已知函数,(Ⅰ)当时,证明;(Ⅱ)已知点,点,设函数,当时,试判断的零点个数.22.(10分)如图,平面四边形为直角梯形,,,,将绕着翻折到.(1)为上一点,且,当平面时,求实数的值;(2)当平面与平面所成的锐二面角大小为时,求与平面所成角的正弦.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

首先求得两曲线的交点坐标,据此可确定积分区间,然后利用定积分的几何意义求解面积值即可.【详解】联立方程:可得:,,结合定积分的几何意义可知曲线y=x2与曲线y2=x所围成的平面图形的面积为:.本题选择B选项.【点睛】本题主要考查定积分的概念与计算,属于中等题.2、A【解析】

先求,再确定展开式中的有理项,最后求系数之和.【详解】解:的展开式中二项式系数和为256故,要求展开式中的有理项,则则二项式展开式中有理项系数之和为:故选:A【点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题.3、B【解析】

作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.4、D【解析】

设直线:,,,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案.【详解】显然直线不满足条件,故可设直线:,,,由,得,,解得或,,,,,,解得,直线的斜率的取值范围为.故选:D.【点睛】本题解题关键是掌握椭圆的基础知识和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题.5、D【解析】

求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【详解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴∁R(A∩B)=(﹣∞,0]∪[,+∞).故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.6、C【解析】

设,根据导数的几何意义,求出切线斜率,进而得到切线方程,将点坐标代入切线方程,抽象出直线方程,且过定点为已知圆的圆心,即可求解.【详解】圆可化为.设,则的斜率分别为,所以的方程为,即,,即,由于都过点,所以,即都在直线上,所以直线的方程为,恒过定点,即直线过圆心,则直线截圆所得弦长为4.故选:C.【点睛】本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.7、D【解析】

化简z=(1+2i)(1+ai)=,再根据z∈R求解.【详解】因为z=(1+2i)(1+ai)=,又因为z∈R,所以,解得a=-2.故选:D【点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.8、B【解析】

利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值.【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B.【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题.9、C【解析】

求导,先求出在单增,在单减,且知设,则方程有4个不同的实数根等价于方程在上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【详解】依题意,,令,解得,,故当时,,当,,且,故方程在上有两个不同的实数根,故,解得.故选:C.【点睛】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数(易求,可解),转化为确定的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.10、C【解析】

先求出五个“完全数”随机分为两组,一组2个,另一组3个的基本事件总数为,再求出6和28恰好在同一组包含的基本事件个数,根据即可求出6和28不在同一组的概率.【详解】解:根据题意,将五个“完全数”随机分为两组,一组2个,另一组3个,则基本事件总数为,则6和28恰好在同一组包含的基本事件个数,∴6和28不在同一组的概率.故选:C.【点睛】本题考查古典概型的概率的求法,涉及实际问题中组合数的应用.11、B【解析】

列举出循环的每一步,可得出输出结果.【详解】,,不成立,,;不成立,,;不成立,,;成立,输出的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.12、A【解析】

首先判断和1的大小关系,再由换底公式和对数函数的单调性判断的大小即可.【详解】因为,,,所以,综上可得.故选:A【点睛】本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据题意,分离参数,转化为只对于内的任意恒成立,令,则只需在定义域内即可,利用放缩法,得出,化简后得出,即可得出的取值范围.【详解】解:已知对于定义域内的任意恒成立,即对于内的任意恒成立,令,则只需在定义域内即可,,,当时取等号,由可知,,当时取等号,,当有解时,令,则,在上单调递增,又,,使得,,则,所以的取值范围为.故答案为:.【点睛】本题考查利用导数研究函数单调性和最值,解决恒成立问题求参数值,涉及分离参数法和放缩法,考查转化能力和计算能力.14、【解析】

把已知等式变形,展开两角和与差的三角函数,结合已知求得值.【详解】解:由,得,,即,,又,,解得:.为正的常数,.故答案为:.【点睛】本题考查两角和与差的三角函数,考查数学转化思想方法,属于中档题.15、【解析】

依题意可得,再根据求模,求数量积,最后根据夹角公式计算可得;【详解】解:因为是夹角为的两个单位向量所以,又,所以,,所以,因为所以;故答案为:【点睛】本题考查平面向量的数量积的运算律,以及夹角的计算,属于基础题.16、【解析】

先表示出渐近线,再代入点,求出,则离心率易求.【详解】解:的渐近线是因为在渐近线上,所以,故答案为:【点睛】考查双曲线的离心率的求法,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、特征值为1,特征向量为.【解析】

设出矩阵M结合矩阵运算和矩阵相等的条件可求矩阵M,然后利用可求特征值的另一个特征向量.【详解】设矩阵M=,则AM=,所以,解得,所以M=,则矩阵M的特征方程为,解得,即特征值为1,设特征值的特征向量为,则,即,解得x=0,所以属于特征值的的一个特征向量为.【点睛】本题主要考查矩阵的运算及特征量的求解,矩阵运算的关键是明确其运算规则,侧重考查数学运算的核心素养.18、(1)(2)【解析】

(1)由不等式可得,讨论与的关系,即可得到结果;(2)先解得不等式,由集合M中有且仅有一个整数,当时,则M中仅有的整数为;当时,则M中仅有的整数为,进而求解即可.【详解】解:(1)因为,所以,当,即时,;当,即时,;当,即时,.(2)由得,当,即时,M中仅有的整数为,所以,即;当,即时,M中仅有的整数为,所以,即;综上,满足题意的k的范围为【点睛】本题考查解一元二次不等式,考查由交集的结果求参数范围,考查分类讨论思想与运算能力.19、(1)乙同学正确(2)分布列见解析,【解析】

(1)由已知可得甲不正确,求出样本中心点代入验证,即可得出结论;(2)根据(1)中得到的回归方程,求出估值,得到“理想数据”的个数,确定“理想数据”的个数的可能值,并求出概率,得到分布列,即可求解.【详解】(1)已知变量具有线性负相关关系,故甲不正确,,代入两个回归方程,验证乙同学正确,故回归方程为:(2)由(1)得到的回归方程,计算估计数据如下表:“理想数据”有3个,故“理想数据”的个数的取值为:.,,于是“理想数据”的个数的分布列【点睛】本题考查样本回归中心点与线性回归直线方程关系,以及离散型随机变量的分布列和期望,意在考查逻辑推理、数学计算能力,属于中档题.20、(1),;(2).【解析】

(1)根据面积公式和数量积性质求角及最大边;(2)根据的长度求出,再根据面积比值求,从而求出.【详解】(1)在中,由,得,由,得,所以,所以,,因为在中,,所以,因为(当且仅当时取等),所以长的最小值为;(2)在三角形中,因为为中线,所以,,所以,因为,所以,所以,由(1)知,所以,或,,所以,因为为角平分线,,,或2,所以,或,所以.【点睛】本题考查了平面向量数量积的性质及其运算,余弦定理解三角形及三角形面积公式的应用,属于中档题.21、(Ⅰ)详见解析;(Ⅱ)1.【解析】

(Ⅰ)令,;则.易得,.即可证明;(Ⅱ),分①,②,③当时,讨论的零点个数即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论