甘肃省武威六中2025届高考数学必刷试卷含解析_第1页
甘肃省武威六中2025届高考数学必刷试卷含解析_第2页
甘肃省武威六中2025届高考数学必刷试卷含解析_第3页
甘肃省武威六中2025届高考数学必刷试卷含解析_第4页
甘肃省武威六中2025届高考数学必刷试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省武威六中2025届高考数学必刷试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是()A.甲 B.乙 C.丙 D.丁2.设,是方程的两个不等实数根,记().下列两个命题()①数列的任意一项都是正整数;②数列存在某一项是5的倍数.A.①正确,②错误 B.①错误,②正确C.①②都正确 D.①②都错误3.执行如图所示的程序框图,输出的结果为()A. B.4 C. D.4.若,则()A. B. C. D.5.已知直线是曲线的切线,则()A.或1 B.或2 C.或 D.或16.记为数列的前项和数列对任意的满足.若,则当取最小值时,等于()A.6 B.7 C.8 D.97.若实数满足的约束条件,则的取值范围是()A. B. C. D.8.如图是二次函数的部分图象,则函数的零点所在的区间是()A. B. C. D.9.已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,,则()A. B.C.6 D.10.过椭圆的左焦点的直线过的上顶点,且与椭圆相交于另一点,点在轴上的射影为,若,是坐标原点,则椭圆的离心率为()A. B. C. D.11.已知向量,,=(1,),且在方向上的投影为,则等于()A.2 B.1 C. D.012.设双曲线的左右焦点分别为,点.已知动点在双曲线的右支上,且点不共线.若的周长的最小值为,则双曲线的离心率的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设全集,,,则______.14.定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个点,,,在半径为的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平面区域的“直径”的最大值是__________.15.已知向量,且,则___________.16.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为____;若该六面体内有一球,则该球体积的最大值为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.18.(12分)(1)已知数列满足:,且(为非零常数,),求数列的前项和;(2)已知数列满足:(ⅰ)对任意的;(ⅱ)对任意的,,且.①若,求数列是等比数列的充要条件.②求证:数列是等比数列,其中.19.(12分)已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列.20.(12分)已知如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AEBD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD平面BCD,如图2所示。(Ⅰ)求证:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱锥B-AEF与四棱锥A-FEDC的体积的比(只需写出结果,不要求过程).21.(12分)已知椭圆:()的离心率为,且椭圆的一个焦点与抛物线的焦点重合.过点的直线交椭圆于,两点,为坐标原点.(1)若直线过椭圆的上顶点,求的面积;(2)若,分别为椭圆的左、右顶点,直线,,的斜率分别为,,,求的值.22.(10分)如图所示,在四面体中,,平面平面,,且.(1)证明:平面;(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【详解】①假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;②假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;③假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;④假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.2、A【解析】

利用韦达定理可得,,结合可推出,再计算出,,从而推出①正确;再利用递推公式依次计算数列中的各项,以此判断②的正误.【详解】因为,是方程的两个不等实数根,所以,,因为,所以,即当时,数列中的任一项都等于其前两项之和,又,,所以,,,以此类推,即可知数列的任意一项都是正整数,故①正确;若数列存在某一项是5的倍数,则此项个位数字应当为0或5,由,,依次计算可知,数列中各项的个位数字以1,3,4,7,1,8,9,7,6,3,9,2为周期,故数列中不存在个位数字为0或5的项,故②错误;故选:A.【点睛】本题主要考查数列递推公式的推导,考查数列性质的应用,考查学生的综合分析以及计算能力.3、A【解析】

模拟执行程序框图,依次写出每次循环得到的的值,当,,退出循环,输出结果.【详解】程序运行过程如下:,;,;,;,;,;,;,,退出循环,输出结果为,故选:A.【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有判断程序框图输出结果,属于基础题目.4、D【解析】

直接利用二倍角余弦公式与弦化切即可得到结果.【详解】∵,∴,故选D【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.5、D【解析】

求得直线的斜率,利用曲线的导数,求得切点坐标,代入直线方程,求得的值.【详解】直线的斜率为,对于,令,解得,故切点为,代入直线方程得,解得或1.故选:D【点睛】本小题主要考查根据切线方程求参数,属于基础题.6、A【解析】

先令,找出的关系,再令,得到的关系,从而可求出,然后令,可得,得出数列为等差数列,得,可求出取最小值.【详解】解法一:由,所以,由条件可得,对任意的,所以是等差数列,,要使最小,由解得,则.解法二:由赋值法易求得,可知当时,取最小值.故选:A【点睛】此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题.7、B【解析】

根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.【详解】实数满足的约束条件,画出可行域如下图所示:将线性目标函数化为,则将平移,平移后结合图像可知,当经过原点时截距最小,;当经过时,截距最大值,,所以线性目标函数的取值范围为,故选:B.【点睛】本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.8、B【解析】

根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】∵,结合函数的图象可知,二次函数的对称轴为,,,∵,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.9、D【解析】

先根据向量坐标运算求出和,进而求出,代入题中给的定义即可求解.【详解】由题意,则,,得,由定义知,故选:D.【点睛】此题考查向量的坐标运算,引入新定义,属于简单题目.10、D【解析】

求得点的坐标,由,得出,利用向量的坐标运算得出点的坐标,代入椭圆的方程,可得出关于、、的齐次等式,进而可求得椭圆的离心率.【详解】由题意可得、.由,得,则,即.而,所以,所以点.因为点在椭圆上,则,整理可得,所以,所以.即椭圆的离心率为故选:D.【点睛】本题考查椭圆离心率的求解,解答的关键就是要得出、、的齐次等式,充分利用点在椭圆上这一条件,围绕求点的坐标来求解,考查计算能力,属于中等题.11、B【解析】

先求出,再利用投影公式求解即可.【详解】解:由已知得,由在方向上的投影为,得,则.故答案为:B.【点睛】本题考查向量的几何意义,考查投影公式的应用,是基础题.12、A【解析】

依题意可得即可得到,从而求出双曲线的离心率的取值范围;【详解】解:依题意可得如下图象,所以则所以所以所以,即故选:A【点睛】本题考查双曲线的简单几何性质,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先求出集合,,然后根据交集、补集的定义求解即可.【详解】解:,或;∴;∴.故答案为:.【点睛】本题主要考查集合的交集、补集运算,属于基础题.14、【解析】

先找到平面区域内任意两点的最大值为,再利用三角恒等变换化简即可得到最大值.【详解】由已知及正弦定理,得,所以,,取AB中点E,AC中点F,BC中点G,如图所示显然平面区域任意两点距离最大值为,而,当且仅当时,等号成立.故答案为:.【点睛】本题考查正弦定理在平面几何中的应用问题,涉及到距离的最值问题,在处理这类问题时,一定要数形结合,本题属于中档题.15、【解析】

由向量平行的坐标表示得出,求解即可得出答案.【详解】因为,所以,解得.故答案为:【点睛】本题主要考查了由向量共线或平行求参数,属于基础题.16、【解析】

(1)先算出正四面体的体积,六面体的体积是正四面体体积的倍,即可得出该六面体的体积;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,求出球的半径,再代入球的体积公式可得答案.【详解】(1)每个三角形面积是,由对称性可知该六面是由两个正四面合成的,可求出该四面体的高为,故四面体体积为,因此该六面体体积是正四面体的2倍,所以六面体体积是;(2)由图形的对称性得,小球的体积要达到最大,即球与六个面都相切时,由于图像的对称性,内部的小球要是体积最大,就是球要和六个面相切,连接球心和五个顶点,把六面体分成了六个三棱锥设球的半径为,所以,所以球的体积.故答案为:;.【点睛】本题考查由平面图形折成空间几何体、考查空间几何体的的表面积、体积计算,考查逻辑推理能力和空间想象能力求解球的体积关键是判断在什么情况下,其体积达到最大,考查运算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)在已知极坐标方程两边同时乘以ρ后,利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2可得曲线C的直角坐标方程;(2)联立直线l的参数方程与x2=4y由韦达定理以及参数的几何意义和弦长公式可得弦长与已知弦长相等可解得.【详解】解:(1)在ρ+ρcos2θ=8sinθ中两边同时乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲线C的直角坐标方程为:x2=4y.(2)联立直线l的参数方程与x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,设A,B两点对应的参数分别为t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.【点睛】本题考查了简单曲线的极坐标方程,属中档题.18、(1);(2)①;②证明见解析.【解析】

(1)由条件可得,结合等差数列的定义和通项公式、求和公式,即可得到所求;(2)①若,可令,运用已知条件和等比数列的性质,即可得到所求充要条件;②当,,,由等比数列的定义和不等式的性质,化简变形,即可得到所求结论.【详解】解:(1),,且为非零常数,,,可得,可得数列的首项为,公差为的等差数列,可得,前项和为;(2)①若,可令,,且,即,,,,对任意的,,可得,可得,,数列是等比数列,则,,可得,,即,又,即有,即,数列是等比数列的充要条件为;②证明:对任意的,,,,,当,,,可得,即以为首项、为公比的等比数列;同理可得以为首项、为公比的等比数列;对任意的,,可得,即有,所以对,,,可得,,即且,则,可令,故数列,,,,,,,,,是以为首项,为公比的等比数列,其中.【点睛】本题考查新定义的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法和推理、运算能力,属于难题.19、(1);(2)见解析.【解析】

(1)利用独立事件的概率乘法公式可计算出所求事件的概率;(2)由题意可知随机变量的可能取值有、、,计算出随机变量在不同取值下的概率,由此可得出随机变量的分布列.【详解】(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件,则;(2)由题意可知,随机变量的可能取值为、、.则,,.故的分布列为【点睛】本题考查概率的计算,同时也考查了随机变量分布列,考查计算能力,属于基础题.20、(Ⅰ)证明见解析;(Ⅱ);(Ⅲ)1:5【解析】

(Ⅰ)由平面ABD⊥平面BCD,交线为BD,AE⊥BD于E,能证明AE⊥平面BCD;(Ⅱ)以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E-xyz,利用向量法求出二面角A-DC-B的余弦值;(Ⅲ)利用体积公式分别求出三棱锥B-AEF与四棱锥A-FEDC的体积,再作比写出答案即可.【详解】(Ⅰ)证明:∵平面ABD⊥平面BCD,交线为BD,又在△ABD中,AE⊥BD于E,AE⊂平面ABD,∴AE⊥平面BCD.(Ⅱ)由(1)知AE⊥平面BCD,∴AE⊥EF,由题意知EF⊥BD,又AE⊥BD,如图,以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,

建立空间直角坐标系E-xyz,设AB=BD=DC=AD=2,

则BE=ED=1,∴AE=,BC=2,BF=,则E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),

F(,0,0),C(,2,0),,,由AE⊥平面BCD知平面BCD的一个法向量为,设平面ADC的一个法向量,则,取x=1,得,∴,∴二面角A-DC-B的平面角为锐角,故余弦值为.

(Ⅲ)三棱锥B-AEF与四棱锥A-FEDC的体积的比为:1:5.【点睛】本题考查线面垂直的证明、几何体体积计算、二面角有关的立体几何综合题,属于中等题.21、(1)(2)【解析】

(1)根据抛物线的焦点求得椭圆的焦点,由此求得,结合椭圆离心率求得,进而求得,从而求得椭圆的标准方程,求得椭圆上顶点的坐标,由此求得直线的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论