【深度报告】理解和解决铝企业制定科学目标的障碍_第1页
【深度报告】理解和解决铝企业制定科学目标的障碍_第2页
【深度报告】理解和解决铝企业制定科学目标的障碍_第3页
【深度报告】理解和解决铝企业制定科学目标的障碍_第4页
【深度报告】理解和解决铝企业制定科学目标的障碍_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1

UnderstandingandAddressingtheBarriersforAluminumCompaniestoSetScience-BasedTargets

SummaryofFindingsandRecommendationsJanuary2020

Thisprojectaimedtoestablishafoundationforthedevelopmentoftoolsandguidancetoenable

aluminumcompaniestosetscience-basedtargets(SBTs).Inthisproject,WRIengagedaluminumsector

expertstoidentifychallengestosettingSBTsusingexistingmethodsandrecommendoptionsfor

pursuingrevisedmethods,aswellasnewguidanceandotherresources.

2

TableofContents

UnderstandingandAddressingtheBarriersforAluminumCompaniestoSetScience-BasedTargets 1

TableofContents 2

Context 3

ProjectScope 3

ProjectActivities 4

ExistingSBTOptionsfortheAluminumSector 5

Scope3Emissions 6

TheSectoralDecarbonizationApproach(SDA) 7

LimitationsofthecurrentSDAforthealuminumsector 8

Ahomogenoussector? 8

Theweightofelectricity 9

Cradletogate 9

KeyChallengesIdentifiedfortheAluminumSector’sAdoptionofSBTs 10

Emissions-intensivegrowth 10

Recyclinguncertainty 10

IEAmodellingoutputsversusreportedindustrydata 11

Regionaldifferences 12

Processemissions 12

Organizationalboundaries 12

2020editionofIEA’sEnergyTechnologiesPerspectives(ETP)publication 13

KeyRecommendationsandPriorities 13

RevisethecurrentSDAtoincludemissingscope1and2emissions 14

UtilizealternativeSDAsectorapproaches 15

DevelopstrategicSBT‘roadmaps’ 16

CreatemultipliersanddiscountfactorstotheSDA 16

SummaryandPrioritizationofRecommendations 17

AppendixA:KeyThemesfromSanAntonioWorkshop 19

AppendixB:GreenhouseGasWorkingGroupIn-PersonMeetingMinutes 22

3

Context

InDecember2015,nearly200countriesadoptedtheParisAgreement,thefirst-everuniversalclimateagreementthatseeksto“strengthentheglobalresponsetothethreatofclimatechangebykeepingaglobaltemperaturerisethiscenturywellbelow2°Celsiusabovepre-industriallevelsandtopursue

effortstolimitthetemperatureincreaseevenfurtherto1.5°Celsius.”In2018,theIntergovernmentalPanelonClimateChange(IPCC)releasedthespecialreportGlobalWarmingof1.5°C(SR1.5),which

providesstrongevidencethatlimitingwarmingbelow1.5°Cwillsignificantlylowerclimateimpactsandhumanitariancriseslinkedtodrought,sealevelrise,flooding,extremeheat,andecosystemcollapse.Tolimitwarmingto1.5°C,theIPCCassertsthatglobalgreenhousegas(GHG)emissionsmustbecutby45%from2010levelsby2030andreachnet-zeroemissionsaround2050(IPCC2018).

Tosupportcorporateeffortstomovetomoresustainablegrowthpatternsandtostaywithinthe

scientifictemperatureguardrailssetbytheIPCC,theScienceBasedTargetsinitiative(SBTi)was

launchedinJune2015.TheSBTidefinesandpromotesbestpracticeinSBTsetting,offersresourcesandguidancetoreducebarrierstoadoption,andindependentlyassessesandapprovescompanies’targets.Forexample,ithascreatedtheSectoralDecarbonizationApproach(SDA),amethodfordevelopingSBTsinthealuminumandotherGHG-intensiveindustries.TheSBTi’soverallaimisthatbytheendof2020,settingSBTswillbestandardbusinesspracticeandcorporationswillplayamajorroleindrivingdownglobalGHGemissions.

AccordingtotheInternationalAluminiumInstitute(IAI),thealuminumsectorcontributesmorethan1gigatonneofcarbondioxideequivalent(GtCO2e)toannualglobalGHGemissions,roughly2%oftotalanthropogenicemissionsglobally.TheInternationalEnergyAgency(IEA)ranksthealuminumsubsectorasthefourth-largestindustrialenergyconsumerandCO2emitter,representing4%(6.2exajoules)of

finalindustrialenergydemandand3%oftotaldirectCO2emissionsfromindustrialsourcesin20141(261millionmetrictonnesofcarbondioxideequivalent,orMtCO2e/year).

Aluminumproductionisparticularlyassociatedwithhighelectricitydemand,whichisresponsibleforapproximately70%oftotalGHGemissionsfromthesector.Infact,thesectoraccountsfor4.7%ofglobalelectricityconsumption(IEA2017)whiletotalenergyuse,onaverage,accountsformorethan40%ofaluminumproductioncosts.2TheGHGpredominantlyemittedintheproductionofprimaryaluminumisCO2,althoughotherGHGswithhighglobalwarmingpotentials(GWP)arealsoemitted.

ProjectScope

Althoughthealuminumindustryisalargeproducerandend-userofenergy,thematerialpropertiesofaluminum—lightweight,durableandhighlyrecyclable—meanthealuminumindustryhasanimportantroletoplayinthetransitiontoalow-carboneconomy.However,ofthe789companiesthathaveeitherapprovedSBTsorhavecommittedtosetSBTs(asofJanuary2020),onlythreearepartofthealuminumindustry:BallCorporation(adownstreamconsumerofrolledproducts),EN+Group(anenergyproducer

1EnergyTechnologyPerspectives2017,IEA

2IPCCAR5TWG3

4

withpredominantlyhydro-poweredprimaryaluminumassetsinitsportfolio),andHulamin(aproducerofrolledproducts).3

Torespondtothisreality,thisprojectwasconceivedtoidentifyexistingandperceivedbarriersforthealuminumsector,leadingtogreaterunderstandingofoptionsforsettingSBTsbyaluminumcompanies.Thekeyexpectedoutcomesfortheprojectinclude:

1.Greaterawarenessofthepracticalchallengesfacedbytheglobalaluminumindustryin

limitingGHGemissionsfromthesector;

2.GreaterunderstandingofthefeasibilityofsectoralSBTpathwaysthatinclude(anddon’t

include)theemissionsreductionpotentialfromalongthevaluechain;

3.Recommendedoptionsforfactoringthesechallengesintorevisedmethodsornewtoolsand

guidanceforsettingSBTsintheindustry.

ProjectActivities

Tobuildsupportfortheproject’sfindingsandbuildmomentumforthedevelopmentoffuturetools,

WRIengagednumerousindustrystakeholdersdrawnfromcompanies,industryassociations,NGOs,

researchorganizations,andinter-governmentalorganizations(includingtheIEA).4WRIcollaborated

closelywiththeIAIinparticular,asoneoftheorganization’scoreactivitiesistocollect,analyze,

disseminateandmaintainthebestavailabledatafortheglobalaluminumsector.Infact,theIEAuses

theIAI’sdatatomodelandproducethealuminumsectoroutputsforitsEnergyTechnologyPerspectives(ETP)publication(animportantdetailtonoteforthepurposesandoutcomesofthisproject).

WRIheldthreestakeholderengagementeventsduringthisproject.ThefirstwasakickoffwebinarheldonJanuary9,2019tointroducetheproject.Aninitiallistof288potentialstakeholderswasidentifiedandprovidedbyIAI,andthekickoffwebinarrecorded228registeredparticipants.Followingthe

webinarWRIconvenedathree-hour,in-personworkshoponMarch13,2019inSanAntonio,Texas.

Overtenrepresentativesfromthealuminumsectorattendedandprovidedcriticalinputontheproject.AppendixAsummarizeskeythemesfromtheworkshopdiscussion,whichwereguidedbythefollowingobjectives:

1.Alignonaluminumsector-specificinputsandassumptionsforrefreshingthesectoral

decarbonization(SDA)pathway;

2.ShareopportunitiesandchallengesforsettingSBTsandreducingemissions;

3.Discusswhattools,guidanceandsupportaluminumcompaniesneedtosetSBTs.

WRIconvenedathirdstakeholdereventonSeptember27,2019inCambridge,UKincollaborationwiththeAluminiumStewardshipInitiative’s(ASI)annualStandardsCommitteemeeting.Nearlytwodozenparticipantsattendedtheworkshop,whereWRIsharedpreliminaryresearchresultsincludingarevisedwell-below2°C(WB2C)5climatestabilizationpathwayforthealuminumsector.Participantsatboth

3

/companies-taking-action/

4AddAppendixwithStakeholderlist

5Although“well-below2˚C”isnotstrictlydefinedintheParisAgreement,itiscommonlyunderstoodtobeanalogoustotheIPCC’s‘likelychance’terminology,whichisequivalenttoa66%probabilityofkeeping

temperaturerisebelowacertainlimit(inthiscase2˚C).

5

workshopsprovidedusefulinputthatultimatelyhelpedinformthisdocument.Ingeneral,themeetingcoveredbrainstorminganddiscussionofSBToptions,aswellastargetedQ&AfromWRItohelpexpandonpreviouslydiscussedideasandtosolicitfeedbackonnewideas.MinutesfromthemeetingwithASIareprovidedinAppendixB.

ExistingSBTOptionsfortheAluminumSector

AsdefinedintheGHGProtocolCorporateAccountingandReportingStandard,scope1emissionsaredirectemissionsfromownedorcontrolledsources,whereasscope2emissionsareindirectemissionsfromthegenerationofpurchasedenergy(WRIandWBCSD2004).

ThecurrentSBTicriteriaandrecommendations(Version4.0,publishedinApril2019)requirescorporatescope1and2targetstobeconsistentwithatleastaWB2Cpathway,withgreatereffortsencouragedtowardlimitingwarmingto1.5°C.Companiesfromthealuminumsectorcurrentlyhavethreemethodsforsettingscope1and2targetswithintheSBTi:

.Absolutecontraction:Reduceabsoluteemissionsbyaminimumof2.5%annuallytokeepglobaltemperatureincreasewithinwell-below2°C,orbyaminimumof4.2%annuallyfora1.5°C

globaltemperaturelimit;

.Activity-basedintensity:Reduceemissionsintensityperphysicalproductionoutputwithaunitthat’srepresentativeofacompany’sportfolio(e.g.,peraluminumcanshipped),which,whentranslatedtoabsoluteemissionsreductionterms,isinlinewiththeminimumabsolute

contractionapproach;

.Sector-based:Theglobalcarbonbudgetisdividedbysectorandemissionreductionsare

allocatedtoindividualcompaniesbasedonthesector’sbudget.Tofacilitatethisapproach,theSBTidevelopedtheSectoralDecarbonizationApproach(SDA).

Forscope3targets,therearefourmethodsavailableforcompanies.6

.Absolutecontraction:Reduceabsoluteemissionsbyaminimumof2.5%annuallytokeepglobaltemperatureincreasewithinwell-below2°C,orbyaminimumof4.2%annuallyfora1.5°C

globaltemperaturelimit;

.Economicintensity:Reduceemissionsintensitypervalueaddedbyatleastanaverageof7%yearonyear;

.Physicalintensity:IntensityreductionsalignedwiththealuminumsectorSDA;ortargetsthatdonotresultinabsoluteemissionsgrowthandleadtolinearannualintensityimprovements

equivalentto2%,ataminimum;

.Supplierengagement:Committohavingaspecificpercentageofsuppliers(asapercentageofspendorGHGemissions)withtheirownSBTswithinfiveyearsfromthedatethecompany’stargetissubmittedtotheSBTiforvalidation.

62°Cistheminimumlevelofambitionforscope3targets;however,companiesareencouragedtopursuegreaterefforttowardawell-below2°C(minimum2.5%annuallinearreduction)ora1.5°Ctrajectory(minimum4.2%

annuallinearreduction).

6

Scope3Emissions

Valuechain(scope3)emissionscanbesignificantforbothupstreamanddownstreamaluminum

companies.For“pureplay”aluminumproducers,forexample,downstreamscope3emissionsfrom

Category10–ProcessingofSoldProducts7(e.g.transformationofonetonneofaluminuminto

componentsfortheaviationsector)areoftenasignificantsourceofemissions.Forallfabricatorsof

aluminumend-useproducts,theupstreamscope3emissionsfromCategory1–PurchasedGoodsandServices8(transformationofminedbauxiteintoonetonneofaluminum)areoftentimesmoresignificantthanthecombinedscope1and2emissionsfromtheirownoperations.Figure1describesthe15scope3categoriesasdefinedbytheGHGProtocolCorporateValueChain(Scope3)AccountingandReporting

Standard.

Figure1:GHGProtocolScope3EmissionsCategories

Whilecompaniesofallstripesfacenumerousbarrierstoaccountingforandaddressingscope3

emissions(e.g.collectingdatafromsuppliers),theseemissionsalsopresentcompanieswithpotentialmitigationopportunitieswhensettingSBTs(e.g.increasedpurchasingfromcarbon-friendlysuppliers).

Forallcompanies,thecurrentSBTicriteriaandrecommendations(Version4.0,publishedinApril2019)requirethesubmissionofascope3targetwhenacompany’srelevantscope3emissionsare40%or

moreoftotalscope1,2and3emissions.Oncethis40%thresholdhasbeenreached,companiesmustsetoneormoreemissionreductiontargetsand/orsupplierorcustomerengagementtargetsthat

collectivelycoveratleasttwo-thirdsoftotalscope3emissionsinconformancewiththeGHGProtocolScope3Standard.

7

/standards/scope-3-standard

8Ibid

7

TheSectoralDecarbonizationApproach(SDA)

TheSDAisascientifically-informedmethodforcompaniestosetGHGreductiontargets.The

methodologyisintendedtohelpcompaniesinhomogenous,energy-intensivesectorswithwell-definedactivityandphysicalintensitydatatoaligntheiremissionsreductiontargetswithaglobalWB2C

pathway.9

ThecurrentSDAmethodprovidesthebasisfortheonlyexisting,sector-specificmethodforsettingSBTsinthealuminumsector.TheSDA’sWB2Cscenarioisbasedonamodeled“Beyond2°C”(B2DS)scenariofromthe2017ETP,10wheretechnologyimprovementsanddeploymentarepushedtotheirmaximumpracticablelimitsacrosstheenergysysteminordertoachievenet-zeroemissionsby2060andtostaynetzeroorbelowthereafter,withoutrequiringunforeseentechnologybreakthroughsorlimiting

economicgrowth.This“technologypush”approachresultsincumulativeemissionsfromtheenergysectorofaround750GtCO2between2015and2100,whichisconsistentwitha50%chanceoflimitingaveragefuturetemperatureincreasesto1.75°C.1112Thealuminumsector’scumulativecarbonbudgetoverthissametimeframehasbeenestimatedtobeapproximately11GtCO2(scope1only),orroughly1%oftheglobalcarbonbudget.

TheIEA’sB2DSscenariolaysoutanenergysystempathwayandaCO2emissionstrajectoryconsistentwithatleasta66%probabilityofkeepingtemperaturerisebelow2˚Cby2100.Underthispathway,theenergyintensityofaluminumproduction(assuminga2010gridmix)mustfallby7%between2010and2025,13andsteeperreductionsarerequiredoverthelongterm.Ultimately,thepathwayimpliesthe

needforlargereductionsinemissionsintensitybetween2010and2050,specifically:direct(scope1)emissionsintensitymustfall88%,whilescope2emissionsintensitymustfall96%.14

Figure2showsthesector’sSDApathwayoutputs(2014–2060)forprimaryaluminum(secondaryexcluded)basedonIEA’sB2DCscenarioandindexedtoproduction.

9TheSBTicurrentlyisintheearlyphasesofdevelopinga1.5°CalignedpathwayforincorporationintotheSDA.10

/reports/energy-technology-perspectives-2017

11Incontrast,theIEA’s20172°Cscenarioestimatesanoverallcarbonbudgetof1,170GtCO2from2015-2100.12

/wp-content/uploads/2019/04/foundations-of-SBT-setting.pdf

13

/etp/etp2016/

14

/wp-content/uploads/2015/05/Sectoral-Decarbonization-Approach-Report.pdf

8

Figure2:IndexedSDApathwayoutputsforprimaryaluminum(2014-2060)

Indexedsector-specificdata(2014baseyear)

Sectoraldata(ETP2017|B2DS)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

activitypowerconsumptionscopeemissionsintensityscopeemissionsintensity

Sector

Sector

Sector2

Sector

1

20142024203420442054

TheSDAmethodtakessectoraldifferencesandabatementpotentialsintoaccount,whichare

consideredinthemakingofthedifferentsectorscope1scenarios.TheSDAmodelalsoincludesscope2scenariosbasedonasharedpowergenerationpathwayforeachscenariooutcome(e.g.1.5˚C).Thesescenarioscanalsobeusedtosetvalidscope3targets,totheextentthatcertainactivitypathways

correspondtoscope3categoriesortheemissionssourcesofacompany’sscope3inventory.For

example,wherecertainscope3categoriesconsistmainlyofpurchasedelectricityemissions,the

relevantSDApowergenerationpathwaycanbeusedtomodelreductiontargets.Forhomogeneous

sectors,theSDAmethodalsoaccommodatesdifferentiatedlevelsofhistoricalaction,asitrequiresGHGemissions-intensivecompaniestoreducetheiremissionsfasterthanthesectoralaverage;conversely,companieswithrelativelylowinitialemissionsintensitiesmayreducetheiremissionsmoreslowly.15

LimitationsofthecurrentSDAforthealuminumsector

CompaniesfromthealuminumsectorhaveexpressedincreasinginterestinusingtheSDAoranothersector-specificintensity-basedapproachtosetSBTsanddemonstratetheircommitmenttotransitiontoalow-carbonfuture.However,companieshavealsoidentifiedandexpressedconcernsaboutthemodelingassumptionsusedtoproducetheSDA’sbenchmarkpathway.

Ahomogenoussector?

Ingeneral,aphysicalindicatorthatrepresentsasector’sprimaryoutput(e.g.onetonneofaluminum)isahelpfulwaytocomparetheemissionsintensityofsimilarcompanieswithinthesamehomogenoussector,andthustheindividuallevelofeffortneededtoconvergetoanoptimallevelofemissionsperunit

ofproduct.Toproduceausefulmetric,however,theunderlyingdatausedtomeasureacompany’semissionsimpactideallyshouldbealignedwiththedatausedtomodelthesector’semissionsimpact(e.g.totalconsumptionofelectricity).

Onecleartakeawayfromstakeholdersinvolvedduringthisprojectisthatwhilstthesectorisgenerallydefinedashomogenous,manycompaniesinthealuminumindustryproduceawidearrayofproductsthatoftentimescannotbecapturedinasinglephysicalindicator.Similarly—butnotuniquetothe

15

/wp-content/uploads/2019/04/foundations-of-SBT-setting.pdf

9

aluminumsectorperse—theorganizationalboundariesthatdefineacompany’sGHGemissionsprofilecanoftendiffer,furthercomplicatingperceptionsofanunlevelplayingfieldbysome.Althoughthisis

notthecaseforeverystakeholder,thediversitythatexistsacrossthealuminumsector’svaluechainhasnonethelesspresentedcomplicationsforbothupstreamanddownstreamactorsinterestedinusingtheSDAtohelpdefinetheirSBT.

Theweightofelectricity

Electricityisasignificantinputtothealuminumproductionprocess,andvariationsintheelectricitymixofglobalaluminumproducersistheprimary(butnotonly)distinctionamongtheGHGemissions

intensity(tCO2e/tAl)ofanaluminumproducer’sfinalsoldproducts.Accordingtoa2011studybytheCarbonTrustthismetriccanvaryconsiderably,fromaslittleas1tCO2e/tAlofrecycledaluminum,to3tCO2e/tAlforbestavailabletechnology(BAT)smelterspoweredbyrenewableelectricity,andupto20tCO2e/tAlforlessmoderntechnologypoweredbycoal-basedelectricity.16

Furthermore,duetothealuminumsector’sconsiderableutilizationofcaptiveordirectlydelivered

powersupplies,thesourceofelectricityactuallyused(andthecorrespondingemissionfactors)can

significantlydifferfromthenationalorregionalgridmixesusedintheIEA’sETPmodelling.17And

becausemanyproducersofaluminumgeneratetheirownelectricity,theprofileoftheirscope1and2emissionsmaydifferconsiderablyfromthoseoftheirpeers,potentiallylimitingtheusefulnessofthealuminumpathwayresultsfromtheSDAmodel.

Cradletogate

Theupstreamsegmentofthealuminummarketconsistsoftheproductionofprimaryaluminum(and

alloys),includingtheentirerawmaterialsupplychainandprocessesthatprecedeitsproduction.The

downstreamsectorismadeupofthousandsofproducersofsemi-finishedandfinishedaluminum

products,aswellasproducersofrecycledaluminumfromprocessedmaterial.Ofconcernformany

downstreamaluminumstakeholdersistheSDA’scoverageofsectoremissionsandactivities,whichis

currentlylimitedtothe“cradle-to-gate”upstreamenergyemissionsfromtransformingbauxiteinto

alumina,anodeproduction,aluminumsmelting(electrolysis)andingotcasting.ThecurrentIEAmodelincludesbothproductionofprimaryaluminumfromaluminaandsecondaryaluminumproduction(fromrecycledmaterials)andofaluminumalloys.Admittedlytheseactivitiesrepresentthelion’sshareof

emissionsfromthesector,buttheabsenceofarelevantpathwayforthedownstreamsegment—beyondtheirupstreamscope3emissions—ostensiblyclosesthedoorforasignificantnumberofpotentialSBTsettersfromtheindustry.18

Onarelatednote,thescope2emissionspathwayresultsfordifferentactorsalongthevaluechainisnotaccountedforinthecurrentSDA.Forexample,thescope2emissionsofadownstreamfabricatorof

aluminumproductsarelikelytobevastlydifferentthanthoseofapure-playproducerofaluminum,and

16

/media/38366/ctc790-international-carbon-flows_-aluminium.pdf

17

/media/filer_public/2018/02/19/lca_report_2015_final_26_june_2017.pdf

18Onaverage72%ofGHGemissionsfromprimaryproductionofaluminumarefromelectricitywiththeremainderfromthermalcombustionoffossilfuelsandprocessemissions.

/media/38366/ctc790

-international-carbon-flows_-aluminium.pdf

10

thustheSDA’sassumptionofintensityconvergencewouldbeparticularlyinappropriateforthefabricator.

KeyChallengesIdentifiedfortheAluminumSector’sAdoptionofSBTs

Basedondiscussionswithstakeholdersduringthewebinars,workshopsandindividualconversations,therearearangeofchallengesastowhythealuminumsectorhasbeenslowtocommittosettingSBTs.Someofthesechallengesarenotuniquetothealuminumsectoranditscompanies(e.g.organic

growth),butseveralchallengesdodemonstrateaneedtomovebeyondaone-size-fits-allapproachfor

thesector.

Mirroringtheoperationaldiversitythatcharacterizesthealuminumindustry,thereisawiderangeofperceivedobstaclesforparticipationamongindividualstakeholders,including:

Emissions-intensivegrowth

Ledbytheeconomicgrowthofemergingeconomies,thesectorestimatesthatby2030itwillproduce90milliontonnesofprimaryaluminum(MTAl),comparedto60MTAltoday.19Givenabusiness-as-

usualscenariobasedoncurrentmacroeconomictrends,thesectorprojectstheproductionofthe

additional30MTAltobesuppliedmostlybyChinaandSouthEastAsia(bothpoweredmostlybycoal-basedelectricity)andtheMiddleEast(poweredbynaturalgas),withtheresultthatfossilfuelscouldpoweranevenhigherpercentageofglobalsmelterproduction(currentlyabout60%).20Intheabsenceofsupportforlow-carbonaluminumfromthepublicandprivatesectors,thisrealityisaparticularly

vexingproblemwithrespecttothesector’scontributiontoclimatechange.

Recyclinguncertainty

Greaterrecyclingbytheindustrytoproducemoresecondaryaluminumisoftencitedasoneofthe

primarywaystoreduceGHGemissionsfromthealuminumsector.Indeedthisistrue,butsectorexperts(e.g.IAI,etal)haveindicatedthereislimitedavailabilityofend-of-lifescrapmetalforcollection(a

functionoflongproductlifetimes,growingdemand,andashiftfromcasttowroughtapplications,

particularlyintheautomotivesector)andincreasingcompetitionforhighquality,well-sortedand

valuablenewscrap(again,particularlyfromtheautosector).21Figure3illustratestheannualdemandamongdifferentsectorsforsemi-fabricatedaluminumproducts(e.g.extrudedaluminum).In2018,forexample,54%oftotaldemandforaluminumwasdominatedbytwosectorsthatproduceproductswithlonglifetimes:Transport(28.4MtAl)andBuilding&Construction(24.8MtAl).

19InternationalAluminumInstitute,

/

20InternationalAluminumInstitute,

/

21EnergyTechnologyPerspectives2017,IEA

11

Figure3:Sectordemandforsemi-fabricatedproducts

180

160

Milliontonnes

140

120

100

80

60

40

20

0

Other

ConsumerDurables

Machinery&EquipmentElectrical

Packaging

Building&ConstructionTransport

200020052010201520202025203020352040Source:IAI

IEAmodellingoutputsversusreportedindustrydata

TheIEA’sETPscenariosareproducedusingmodelsthataccountforindustrialenergyconsumption

separatelyfromtheproductionofelectricity.However,becausealuminumsmeltersareoftenco-locatedwithaluminumindustry-operatedpowergenerationfacilities,electricityproductionandconsumption

areintertwinedforasubstantialportionofthesector.Despiteaconsiderableamountofdesktop

researchandcollaborationwithindustryexperts(mostnotablyIAI),thediscrepancybetweentheIEA’selectricityconsumptionfiguresforthesectorandthoseoftheIAI’sremainsunclear.Predictably,the

correspondingdifferencesinscope2emissionsestimatesfromIEAandIAIforelectricityusebythe

sectorareconsiderable(35%).Table1showsthediscrepanciesinscope1emissionsestimatesbetweentheIEAandtheIAI(47%)andthetotalpercentagedifferenceforallGHGemissions(39%).Ofequal

concernisthedifferencebetweenIEA’stotalreportedproductionofprimaryandsecondaryaluminum(126MTAlin2014)versusthoseoftheIAI(80MTin2014).ThedifferencebetweenthesenumbersisnotfullyaccountedforbytheIEA,sowingconfusionabouttheresultsofitsanalysisforthesectoranditsappropriatenessformodellingcorporatetargetsusingtheSDA.

12

Table1:ModellingImplicationsofDifferingDataEstimates

SOURCE

SCOPE1EMISSIONS

(2018)

SCOPE2EMISSIONS

(2018)

TOTAL2018EMISSIONS(SCOPE1AND2)

IEAETP2017

273MTCO2e

500MTCO2e

773MTCO2e

IAI2018

401MTCO2e

676MTCO2e

1,077MTCO2e

Differencebetweenestimations(%)

47%

35%

39%

Regionaldifferences

ThecurrentversionoftheSDAmethodintrinsicallyaccountsforregionaldifferencesregardinglevelofactivityandcarbonintensity,butnotexplicitlyinrelationtoregionalresources.Strongregional

variationsexistforthepowersectorglobally,however,under

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论