13.4 课题学习 最短路径问题_第1页
13.4 课题学习 最短路径问题_第2页
13.4 课题学习 最短路径问题_第3页
13.4 课题学习 最短路径问题_第4页
13.4 课题学习 最短路径问题_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十三章三角形教学备注学生在课前完成自主学习部分1.复习引入(见幻灯片3教学备注学生在课前完成自主学习部分1.复习引入(见幻灯片3-4)学习目标:1.能利用轴对称解决简单的最短路径问题.2.体会图形的变化在解决最值问题中的作用,感悟转化思想.重点:体会图形的变化在解决最值问题中的作用,感悟转化思想.难点:利用轴对称解决简单的最短路径问题.自主学习自主学习一、知识链接1.如图,连接A、B两点的所有连线中,哪条最短?为什么?2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事实?(1)三角形的三边关系:__________________________________;(2)直角三角形中边的关系:______________________________.4.如图,如何作点A关于直线l的对称点?教学备注配套PPT讲授教学备注配套PPT讲授2.探究点1新知讲授(见幻灯片5-15)课堂探究要点探究探究点1:牧人饮马问题实际问题:如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短? 数学问题:在直线l上求作一点C,使AC+BC最短问题.问题1:现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?问题2:如果点A,B分别是直线l同侧的两个点,又应该如何解决?想一想:对于问题2,如何将点B“移”到l的另一侧B′处,满足直线l上的任意一点C,都保持CB与CB′的长度相等?要点归纳:(1)作点B关于直线l的对称点B′;(2)连接AB′,与直线l相交于点C.则点C即为所求.如图所示.问题3:你能用所学的知识证明AC+BC最短吗?证明:练一练:如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需要管道最短的是()教学备注教学备注3.探究点2新知讲授(见幻灯片16-24)典例精析例1:如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为()A.7.5B.5C.4D.不能确定方法总结:此类求线段和的最小值问题,找准对称点是关键,而后将求线段长的和转化为求某一线段的长,而再根据已知条件求解.例2:如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时点C的坐标是()A.(0,3)B.(0,2)C.(0,1)D.(0,0)方法总结:求三角形周长的最小值,先确定动点所在的直线和固定点,而后作某一固定点关于动点所在直线的对称点,而后将其与另一固定点连线,连线与动点所在直线的交点即为三角形周长最小时动点的位置.探究点2:造桥选址问题实际问题:如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短(假定河的两岸是平行的直线,桥要与河垂直)?教学备注配套PPT讲授教学备注配套PPT讲授数学问题:如图,假定任选位置造桥MN,连接AM和BN,从A到B的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?想一想:我们能否在不改变AM+MN+BN的前提下把桥转化到一侧呢?什么图形变换能帮助我们呢?画一画:(1)把A平移到岸边. (2)把B平移到岸边.(3)把桥平移到和A相连. (4)把桥平移到和B相连.问题解决:1.如图,平移A到A1,使AA1等于河宽,连接A1B交河岸于N作桥MN,此时路径AM+MN+BN最短.证明:另任作桥M1N1,连接AM1,BN1,A1N1.教学备注配套PPT讲授5.课堂小结6.当堂检测(见幻灯片24-28)2.如图,平移B到E,使BE等于河宽,连接教学备注配套PPT讲授5.课堂小结6.当堂检测(见幻灯片24-28)要点归纳:解决最短路径问题的方法:在解决最短路径问题时,我们通常利用轴对称、平移等变换把未知问题转化为已解决的问题,从而作出最短路径的选择.二、课堂小结最短路径问题最短路径问题牧人饮马问题造桥选址问题轴对称+线段公理平移当堂检测当堂检测1.如图,直线m同侧有A、B两点,A、A′关于直线m对称,A、B关于直线n对称,直线m与A′B和n分别交于P、Q,下面的说法正确的是()A.P是m上到A、B距离之和最短的点,Q是m上到A、B距离相等的点B.Q是m上到A、B距离之和最短的点,P是m上到A、B距离相等的点C.P、Q都是m上到A、B距离之和最短的点D.P、Q都是m上到A、B距离相等的点第1题图第2题图第3题图2.如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.若在OA、OB上分别有动点Q、R,则△PQR周长的最小值是()A.10B.15C.20D.30教学备注3.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离是_____米.教学备注4.如图,边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,3).点P在x轴上,当PA+PB的值最小时,在图中画出点P.拓展提升:6.(1)如图①,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点;(2)如图②,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点;(3)如图③,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点.图①图②图③

参考答案自主学习一、知识链接1.解:②最短,因为两点之间,线段最短.2.解:PC最短,因为垂线段最短.3.两边之和大于第三边斜边大于直角边4.解:如图.课堂探究要点探究探究点1:牧人饮马问题问题1解:连接AB,与直线l相交于一点C.根据是“两点之间,线段最短”,可知这个交点即为所求.问题2利用轴对称,作出点B关于直线l的对称点B′.问题3证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC=B′C,BC′=B′C′.∴AC+BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′.在△AB′C′中,AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.练一练D典例精析例1B解析:△ABC为等边三角形,点D是BC边的中点,即点B与点C关于直线AD对称.∵点F在AD上,故BF=CF.即BF+EF的最小值可转化为求CF+EF的最小值,故连接CE即可,线段CE的长即为BF+EF的最小值.例2A解析:作B点关于y轴对称点B′,连接AB′,交y轴于点C′,此时△ABC的周长最小,然后依据点A与点B′的坐标可得到BE、AE的长,然后证明△B′C′O为等腰直角三角形即可.探究点2:造桥选址问题画一画:(1)(2)如图所示.(3)(4)如图所示.问题解决:1.证明:另任作桥M1N1,连接AM1,BN1,A1N1.由平移的性质知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1转化为AA1+A1N1+BN1.在△A1N1B中,因为A1N1+B1>A1B,因此AM1+M1N1+BN1>AM+MN+BN.2.证明:由平移的性质,得BN∥EM且BN=EM,MN=CD,BD∥CE,BD=CE,所以A到B的路径长为AM+MN+BN=AM+MN+EM=AE+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论