版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
临汾市第一中学2025届高考适应性考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为()A.2 B.3 C.4 D.52.复数的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是()A. B. C. D.4.赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为()A. B.C. D.5.已知复数(为虚数单位),则下列说法正确的是()A.的虚部为 B.复数在复平面内对应的点位于第三象限C.的共轭复数 D.6.函数的图象为C,以下结论中正确的是()①图象C关于直线对称;②图象C关于点对称;③由y=2sin2x的图象向右平移个单位长度可以得到图象C.A.① B.①② C.②③ D.①②③7.已知正项数列满足:,设,当最小时,的值为()A. B. C. D.8.某校在高一年级进行了数学竞赛(总分100分),下表为高一·一班40名同学的数学竞赛成绩:555759616864625980889895607388748677799497100999789818060796082959093908580779968如图的算法框图中输入的为上表中的学生的数学竞赛成绩,运行相应的程序,输出,的值,则()A.6 B.8 C.10 D.129.已知直线y=k(x+1)(k>0)与抛物线C相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则|FA|=()A.1 B.2 C.3 D.410.复数满足,则()A. B. C. D.11.已知双曲线的一条渐近线倾斜角为,则()A.3 B. C. D.12.已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为()A. B. C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为,过点且斜率为1的直线交抛物线于两点,,若线段的垂直平分线与轴交点的横坐标为,则的值为_________.14.设全集,,,则______.15.记数列的前项和为,已知,且.若,则实数的取值范围为________.16.已知三棱锥的四个顶点在球的球面上,,是边长为2的正三角形,,则球的体积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求实数的取值范围.18.(12分)已知圆上有一动点,点的坐标为,四边形为平行四边形,线段的垂直平分线交于点.(Ⅰ)求点的轨迹的方程;(Ⅱ)过点作直线与曲线交于两点,点的坐标为,直线与轴分别交于两点,求证:线段的中点为定点,并求出面积的最大值.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分别是AB,A1C的中点.(1)求证:直线MN⊥平面ACB1;(2)求点C1到平面B1MC的距离.20.(12分)已知凸边形的面积为1,边长,,其内部一点到边的距离分别为.求证:.21.(12分)如图,在直角中,,,,点在线段上.(1)若,求的长;(2)点是线段上一点,,且,求的值.22.(10分)已知函数.(1)若,求不等式的解集;(2)若“,”为假命题,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,故选:A.【点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.2、A【解析】
试题分析:由题意可得:.共轭复数为,故选A.考点:1.复数的除法运算;2.以及复平面上的点与复数的关系3、C【解析】由三视图可知,该几何体是下部是半径为2,高为1的圆柱的一半,上部为底面半径为2,高为2的圆锥的一半,所以,半圆柱的体积为,上部半圆锥的体积为,所以该几何体的体积为,故应选.4、D【解析】
设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【详解】由题意,设,则,即小正六边形的边长为,所以,,,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题.5、D【解析】
利用的周期性先将复数化简为即可得到答案.【详解】因为,,,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.6、B【解析】
根据三角函数的对称轴、对称中心和图象变换的知识,判断出正确的结论.【详解】因为,又,所以①正确.,所以②正确.将的图象向右平移个单位长度,得,所以③错误.所以①②正确,③错误.故选:B【点睛】本小题主要考查三角函数的对称轴、对称中心,考查三角函数图象变换,属于基础题.7、B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.【详解】由得,即,,当且仅当时取得最小值,此时.故选:B【点睛】本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.8、D【解析】
根据程序框图判断出的意义,由此求得的值,进而求得的值.【详解】由题意可得的取值为成绩大于等于90的人数,的取值为成绩大于等于60且小于90的人数,故,,所以.故选:D【点睛】本小题考查利用程序框图计算统计量等基础知识;考查运算求解能力,逻辑推理能力和数学应用意识.9、C【解析】
方法一:设,利用抛物线的定义判断出是的中点,结合等腰三角形的性质求得点的横坐标,根据抛物线的定义求得,进而求得.方法二:设出两点的横坐标,由抛物线的定义,结合求得的关系式,联立直线的方程和抛物线方程,写出韦达定理,由此求得,进而求得.【详解】方法一:由题意得抛物线的准线方程为,直线恒过定点,过分别作于,于,连接,由,则,所以点为的中点,又点是的中点,则,所以,又所以由等腰三角形三线合一得点的横坐标为,所以,所以.方法二:抛物线的准线方程为,直线由题意设两点横坐标分别为,则由抛物线定义得又①②由①②得.故选:C【点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,属于中档题.10、C【解析】
利用复数模与除法运算即可得到结果.【详解】解:,故选:C【点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.11、D【解析】
由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果.【详解】由双曲线方程可知:,渐近线方程为:,一条渐近线的倾斜角为,,解得:.故选:.【点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求.12、B【解析】
求出圆心,代入渐近线方程,找到的关系,即可求解.【详解】解:,一条渐近线,故选:B【点睛】利用的关系求双曲线的离心率,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
设,写出直线方程代入抛物线方程后应用韦达定理求得,由抛物线定义得焦点弦长,求得,再写出的垂直平分线方程,得,从而可得结论.【详解】抛物线的焦点坐标为,直线的方程为,据得.设,则.线段垂直平分线方程为,令,则,所以,所以.故答案为:1.【点睛】本题考查抛物线的焦点弦问题,根据抛物线的定义表示出焦点弦长是解题关键.14、【解析】
先求出集合,,然后根据交集、补集的定义求解即可.【详解】解:,或;∴;∴.故答案为:.【点睛】本题主要考查集合的交集、补集运算,属于基础题.15、【解析】
根据递推公式,以及之间的关系,即可容易求得,再根据数列的单调性,求得其最大值,则参数的范围可求.【详解】当时,,解得.所以.因为,则,两式相减,可得,即,则.两式相减,可得.所以数列是首项为3,公差为2的等差数列,所以,则.令,则.当时,,数列单调递减,而,,,故,即实数的取值范围为.故答案为:.【点睛】本题考查由递推公式求数列的通项公式,涉及数列单调性的判断,属综合困难题.16、【解析】
由题意可得三棱锥的三条侧棱两两垂直,则它的外接球就是棱长为的正方体的外接球,求出正方体的对角线的长,就是球的直径,然后求出球的体积.【详解】解:因为,为正三角形,所以,因为,所以三棱锥的三条侧棱两两垂直,所以它的外接球就是棱长为的正方体的外接球,因为正方体的对角线长为,所以其外接球的半径为,所以球的体积为故答案为:【点睛】此题考查球的体积,几何体的外接球,考查空间想象能力,计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用零点分段讨论法把函数改写成分段函数的形式,分三种情况分别解不等式,然后取并集即可;(Ⅱ)利用绝对值三角不等式求出的最小值,利用均值不等式求出的最小值,结合题意,只需即可,解不等式即可求解.【详解】(Ⅰ)当时,,,或,或,或所以不等式的解集为;(Ⅱ)因为,又(当时等号成立),依题意,,,有,则,解之得,故实数的取值范围是.【点睛】本题考查由存在性问题求参数的范围、零点分段讨论法解绝对值不等式、利用绝对值三角不等式和均值不等式求最值;考查运算求解能力、分类讨论思想、逻辑推理能力;属于中档题.18、(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)先画出图形,结合垂直平分线和平行四边形性质可得为一定值,,故可确定点轨迹为椭圆(),进而求解;(Ⅱ)设直线方程为,点坐标分别为,联立直线与椭圆方程得,,分别由点斜式求得直线KA的方程为,令得,同理得,由结合韦达定理即可求解,而,当重合交于点时,可求最值;【详解】(Ⅰ),所以点的轨迹是一个椭圆,且长轴长,半焦距,所以,轨迹的方程为.(Ⅱ)当直线的斜率为0时,与曲线无交点.当直线的斜率不为0时,设过点的直线方程为,点坐标分别为.直线与椭圆方程联立得消去,得.则,.直线KA的方程为.令得.同理可得.所以.所以的中点为.不妨设点在点的上方,则.【点睛】本题考查根据椭圆的定义求椭圆的方程,椭圆中的定点定值问题,属于中档题19、(1)证明见解析.(2)【解析】
(1)连接AC1,BC1,结合中位线定理可证MN∥BC1,再结合线面垂直的判定定理和线面垂直的性质分别求证AC⊥BC1,BC1⊥B1C,即可求证直线MN⊥平面ACB1;(2)作交于点,通过等体积法,设C1到平面B1CM的距离为h,则有,结合几何关系即可求解【详解】(1)证明:连接AC1,BC1,则N∈AC1且N为AC1的中点;∵M是AB的中点.所以:MN∥BC1;∵A1A⊥平面ABC,AC⊂平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC⊂平面BB1C1C,CC1⊂平面BB1C1C,∴AC⊥平面BB1C1C,BC⊂平面BB1C1C,∴AC⊥BC1;又MN∥BC1∴AC⊥MN,∵CB=C1C=1,∴四边形BB1C1C正方形,∴BC1⊥B1C,∴MN⊥B1C,而AC∩B1C=C,且AC⊂平面ACB1,CB1⊂平面ACB1,∴MN⊥平面ACB1,(2)作交于点,设C1到平面B1CM的距离为h,因为MP,所以•MP,因为CM,B1C;B1M,所以所以:CM•B1M.因为,所以,解得所以点,到平面的距离为【点睛】本题主要考查面面垂直的证明以及点到平面的距离,一般证明面面垂直都用线面垂直转化为面面垂直,而点到面的距离常用体积转化来求,属于中档题20、证明见解析【解析】
由已知,易得,所以利用柯西不等式和基本不等式即可证明.【详解】因为凸边形的面积为1,所以,所以(由柯西不等式得)(由均值不等式得)【点睛】本题考查利用柯西不等式、基本不等式证明不等式的问题,考查学生对不等式灵活运用的能力,是一道容易题.21、(1)3;(2).【解析】
(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年XX污水处理厂污水处理厂水质提升技术服务合同2篇
- 2024养老院入住家庭式护理与情感关怀合同3篇
- 2024年产业园区融资居间合作协议范本3篇
- 吉林师范大学博达学院《地方立法理论与实务》2023-2024学年第一学期期末试卷
- 2024年度石子购销合同的争议解决方式2篇
- 2024年度医院环保设施建设合同8篇
- 2024商铺租赁合同范本:特色商业街区商铺租赁合同模板3篇
- 2024三维模型制作及虚拟现实体验合同书3篇
- 2024年度房产交易合同样本:房屋买卖合同的签订及生效条件
- 2024年度防水材料供应与消防水池施工合同3篇
- 【课件】供应商现场与质量管理
- 2024年实验室工作计划例文(六篇)
- 《磁盘阵列》课件
- 2024年广东省广州市白云区中考语文一模试卷
- 《送给新年的礼物》课件
- 《糖尿病足患者的护理措施》5000字(论文)
- 湘豫名校联考2024年11月高三一轮复习诊断 历史试卷(含答案)
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 跨年安保活动方案
- 法制教育课件教学课件
- 魅力科学学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论