陕西省西安三中2025届高考适应性考试数学试卷含解析_第1页
陕西省西安三中2025届高考适应性考试数学试卷含解析_第2页
陕西省西安三中2025届高考适应性考试数学试卷含解析_第3页
陕西省西安三中2025届高考适应性考试数学试卷含解析_第4页
陕西省西安三中2025届高考适应性考试数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安三中2025届高考适应性考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题:任意,都有;命题:,则有.则下列命题为真命题的是()A. B. C. D.2.已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为()A. B. C. D.3.如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何体的表面积为()A. B.C. D.4.设,若函数在区间上有三个零点,则实数的取值范围是()A. B. C. D.5.设、,数列满足,,,则()A.对于任意,都存在实数,使得恒成立B.对于任意,都存在实数,使得恒成立C.对于任意,都存在实数,使得恒成立D.对于任意,都存在实数,使得恒成立6.已知椭圆内有一条以点为中点的弦,则直线的方程为()A. B.C. D.7.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,它的终边过点,则的值为()A. B. C. D.8.若复数满足,则()A. B. C. D.9.如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的是()A.2019年12月份,全国居民消费价格环比持平B.2018年12月至2019年12月全国居民消费价格环比均上涨C.2018年12月至2019年12月全国居民消费价格同比均上涨D.2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格10.不等式组表示的平面区域为,则()A., B.,C., D.,11.设分别是双线的左、右焦点,为坐标原点,以为直径的圆与该双曲线的两条渐近线分别交于两点(位于轴右侧),且四边形为菱形,则该双曲线的渐近线方程为()A. B. C. D.12.函数的一个零点在区间内,则实数a的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在△ABC中,E为边AC上一点,且,P为BE上一点,且满足,则的最小值为______.14.“六艺”源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“礼”与“乐”必须排在前两节,“射”和“御”两讲座必须相邻的不同安排种数为________.15.设等比数列的前项和为,若,,则__________.16.在平面五边形中,,,,且.将五边形沿对角线折起,使平面与平面所成的二面角为,则沿对角线折起后所得几何体的外接球的表面积是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.18.(12分)(选修4-4:坐标系与参数方程)在平面直角坐标系,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)过点且与直线平行的直线交于,两点,求点到,的距离之积.19.(12分)设数列满足,.(1)求数列的通项公式;(2)设,求数列的前项和.20.(12分)某企业现有A.B两套设备生产某种产品,现从A,B两套设备生产的大量产品中各抽取了100件产品作为样本,检测某一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是从A设备抽取的样本频率分布直方图,表1是从B设备抽取的样本频数分布表.图1:A设备生产的样本频率分布直方图表1:B设备生产的样本频数分布表质量指标值频数2184814162(1)请估计A.B设备生产的产品质量指标的平均值;(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在内的定为一等品,每件利润240元;质量指标值落在或内的定为二等品,每件利润180元;其它的合格品定为三等品,每件利润120元.根据图1、表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.企业由于投入资金的限制,需要根据A,B两套设备生产的同一种产品每件获得利润的期望值调整生产规模,请根据以上数据,从经济效益的角度考虑企业应该对哪一套设备加大生产规模?21.(12分)某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查.根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立.若零件的长度满足,则认为该零件是合格的,否则该零件不合格.(1)假设某一天小张抽查出不合格的零件数为,求及的数学期望;(2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率.已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元.假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由.附:若随机变量服从正态分布,则.22.(10分)已知数列满足,,其前n项和为.(1)通过计算,,,猜想并证明数列的通项公式;(2)设数列满足,,,若数列是单调递减数列,求常数t的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

先分别判断命题真假,再由复合命题的真假性,即可得出结论.【详解】为真命题;命题是假命题,比如当,或时,则不成立.则,,均为假.故选:B【点睛】本题考查复合命题的真假性,判断简单命题的真假是解题的关键,属于基础题.2、D【解析】

先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.【详解】由已知得,则.因为,数列是单调递增数列,所以,则,化简得,所以.故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.3、C【解析】

由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.4、D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.5、D【解析】

取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案.【详解】取,,数列恒单调递增,且不存在最大值,故排除AB选项;由蛛网图可知,存在两个不动点,且,,因为当时,数列单调递增,则;当时,数列单调递减,则;所以要使,只需要,故,化简得且.故选:D.【点睛】本题考查递推数列的综合运用,考查逻辑推理能力,属于难题.6、C【解析】

设,,则,,相减得到,解得答案.【详解】设,,设直线斜率为,则,,相减得到:,的中点为,即,故,直线的方程为:.故选:.【点睛】本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.7、B【解析】

根据三角函数定义得到,故,再利用和差公式得到答案.【详解】∵角的终边过点,∴,.∴.故选:.【点睛】本题考查了三角函数定义,和差公式,意在考查学生的计算能力.8、B【解析】

由题意得,,求解即可.【详解】因为,所以.故选:B.【点睛】本题考查复数的四则运算,考查运算求解能力,属于基础题.9、D【解析】

先对图表数据的分析处理,再结简单的合情推理一一检验即可【详解】由折线图易知A、C正确;2019年3月份及6月份的全国居民消费价格环比是负的,所以B错误;设2018年12月份,2018年11月份,2017年12月份的全国居民消费价格分别为,由题意可知,,,则有,所以D正确.故选:D【点睛】此题考查了对图表数据的分析处理能力及进行简单的合情推理,属于中档题.10、D【解析】

根据题意,分析不等式组的几何意义,可得其表示的平面区域,设,分析的几何意义,可得的最小值,据此分析选项即可得答案.【详解】解:根据题意,不等式组其表示的平面区域如图所示,其中,,

设,则,的几何意义为直线在轴上的截距的2倍,

由图可得:当过点时,直线在轴上的截距最大,即,当过点原点时,直线在轴上的截距最小,即,故AB错误;

设,则的几何意义为点与点连线的斜率,由图可得最大可到无穷大,最小可到无穷小,故C错误,D正确;故选:D.【点睛】本题考查本题考查二元一次不等式的性质以及应用,关键是对目标函数几何意义的认识,属于基础题.11、B【解析】

由于四边形为菱形,且,所以为等边三角形,从而可得渐近线的倾斜角,求出其斜率.【详解】如图,因为四边形为菱形,,所以为等边三角形,,两渐近线的斜率分别为和.故选:B【点睛】此题考查的是求双曲线的渐近线方程,利用了数形结合的思想,属于基础题.12、C【解析】

显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C【点睛】本题考查零点存在性定理的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】试题分析:根据题意有,因为三点共线,所以有,从而有,所以的最小值是.考点:向量的运算,基本不等式.【方法点睛】该题考查的是有关应用基本不等式求最值的问题,属于中档题目,在解题的过程中,关键步骤在于对题中条件的转化,根据三点共线,结合向量的性质可知,从而等价于已知两个正数的整式形式和为定值,求分式形式和的最值的问题,两式乘积,最后应用基本不等式求得结果,最后再加,得出最后的答案.14、【解析】

分步排课,首先将“礼”与“乐”排在前两节,然后,“射”和“御”捆绑一一起作为一个元素与其它两个元素合起来全排列,同时它们内部也全排列.【详解】第一步:先将“礼”与“乐”排在前两节,有种不同的排法;第二步:将“射”和“御”两节讲座捆绑再和其他两艺全排有种不同的排法,所以满足“礼”与“乐”必须排在前两节,“射”和“御”两节讲座必须相邻的不同安排种数为.故答案为:1.【点睛】本题考查排列的应用,排列组合问题中,遵循特殊元素特殊位置优先考虑的原则,相邻问题用捆绑法,不相邻问题用插入法.15、【解析】

由题意,设等比数列的公比为,根据已知条件,列出方程组,求得的值,利用求和公式,即可求解.【详解】由题意,设等比数列的公比为,因为,即,解得,,所以.【点睛】本题主要考查了等比数列的通项公式,及前n项和公式的应用,其中解答中根据等比数列的通项公式,正确求解首项和公比是解答本题的关键,着重考查了推理与计算能力,属于基础题.16、【解析】

设的中心为,矩形的中心为,过作垂直于平面的直线,过作垂直于平面的直线,得到直线与的交点为几何体外接球的球心,结合三角形的性质,求得球的半径,利用表面积公式,即可求解.【详解】设的中心为,矩形的中心为,过作垂直于平面的直线,过作垂直于平面的直线,则由球的性质可知,直线与的交点为几何体外接球的球心,取的中点,连接,,由条件得,,连接,因为,从而,连接,则为所得几何体外接球的半径,在直角中,由,,可得,即外接球的半径为,故所得几何体外接球的表面积为.故答案为:.【点睛】本题主要考查了空间几何体的结构特征,以及多面体的外接球的表面积的计算,其中解答中熟记空间几何体的结构特征,求得外接球的半径是解答的关键,着重考查了空间想象能力与运算求解能力,属于中档试题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)曲线的直角坐标方程为;直线的直角坐标方程为(2)【解析】

(1)由公式可化极坐标方程为直角坐标方程,消参法可化参数方程为普通方程;(2)联立两曲线方程,解方程组得两交点坐标,从而得两点间距离.【详解】解:(1)曲线的直角坐标方程为直线的直角坐标方程为(2)据解,得或【点睛】本题考查极坐标与直角坐标的互化,考查参数方程与普通方程的互化,属于基础题.18、(1)曲线:,直线的直角坐标方程;(2)1.【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线化为普通方程,再根据将直线的极坐标方程化为直角坐标方程;(2)根据题意设直线参数方程,代入C方程,利用参数几何意义以及韦达定理得点到,的距离之积试题解析:(1)曲线化为普通方程为:,由,得,所以直线的直角坐标方程为.(2)直线的参数方程为(为参数),代入化简得:,设两点所对应的参数分别为,则,.19、(1);(2).【解析】

(1)令可求得的值,令时,由可得出,两式相减可得的表达式,然后对是否满足在时的表达式进行检验,由此可得出数列的通项公式;(2)求出数列的通项公式,对分奇数和偶数两种情况讨论,利用奇偶分组求和法结合等差数列和等比数列的求和公式可求得结果.【详解】(1),当时,;当时,由得,两式相减得,.满足.因此,数列的通项公式为;(2).①当为奇数时,;②当为偶数时,.综上所述,.【点睛】本题考查数列通项的求解,同时也考查了奇偶分组求和法,考查计算能力,属于中等题.20、(1)30.2,29;(2)B设备【解析】

(1)平均数的估计值为组中值与频率乘积的和;(2)要注意指标值落在内的产品才视为合格品,列出A、B设备利润分布列,算出期望即可作出决策.【详解】(1)A设备生产的样本的频数分布表如下质量指标值频数41640121810.根据样本质量指标平均值估计A设备生产一件产品质量指标平均值为30.2.B设备生产的样本的频数分布表如下质量指标值频数2184814162根据样本质量指标平均值估计B设备生产一件产品质量指标平均值为29.(2)A设备生产一件产品的利润记为X,B设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论