中国科学院大学《生物信息学:高通量测序数据分析技术》2022-2023学年第一学期期末试卷_第1页
中国科学院大学《生物信息学:高通量测序数据分析技术》2022-2023学年第一学期期末试卷_第2页
中国科学院大学《生物信息学:高通量测序数据分析技术》2022-2023学年第一学期期末试卷_第3页
中国科学院大学《生物信息学:高通量测序数据分析技术》2022-2023学年第一学期期末试卷_第4页
中国科学院大学《生物信息学:高通量测序数据分析技术》2022-2023学年第一学期期末试卷_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页中国科学院大学《实用生物信息学:高通量测序数据分析技术》

2022-2023学年第一学期期末试卷题号一二三四总分得分批阅人一、单选题(本大题共15个小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在机器学习中,特征工程是非常重要的一步。假设我们要预测一个城市的空气质量,有许多相关的原始数据,如气象数据、交通流量、工厂排放等。以下关于特征工程的描述,哪一项是不准确的?()A.对原始数据进行标准化或归一化处理,可以使不同特征在数值上具有可比性B.从原始数据中提取新的特征,例如计算交通流量的日变化率,有助于提高模型的性能C.特征选择是选择对目标变量有显著影响的特征,去除冗余或无关的特征D.特征工程只需要在模型训练之前进行一次,后续不需要再进行调整和优化2、在构建一个机器学习模型时,我们通常需要对数据进行预处理。假设我们有一个包含大量缺失值的数据集,以下哪种处理缺失值的方法是较为合理的()A.直接删除包含缺失值的样本B.用平均值填充缺失值C.用随机值填充缺失值D.不处理缺失值,直接使用原始数据3、在一个分类问题中,如果类别之间的边界不清晰,以下哪种算法可能能够更好地处理这种情况?()A.支持向量机B.决策树C.朴素贝叶斯D.随机森林4、在一个金融风险预测的项目中,需要根据客户的信用记录、收入水平、负债情况等多种因素来预测其违约的可能性。同时,要求模型能够适应不断变化的市场环境和新的数据特征。以下哪种模型架构和训练策略可能是最恰当的?()A.构建一个线性回归模型,简单直观,易于解释和更新,但可能无法处理复杂的非线性关系B.选择逻辑回归模型,结合正则化技术防止过拟合,能够处理二分类问题,但对于多因素的复杂关系表达能力有限C.建立多层感知机神经网络,通过调整隐藏层的数量和节点数来捕捉复杂关系,但训练难度较大,容易过拟合D.采用基于随机森林的集成学习方法,结合特征选择和超参数调优,能够处理多因素和非线性关系,且具有较好的稳定性和泛化能力5、在进行特征工程时,如果特征之间存在共线性,即一个特征可以由其他特征线性表示,以下哪种方法可以处理共线性?()A.去除相关特征B.对特征进行主成分分析C.对特征进行标准化D.以上都可以6、欠拟合也是机器学习中需要关注的问题。以下关于欠拟合的说法中,错误的是:欠拟合是指模型在训练数据和测试数据上的表现都不佳。欠拟合的原因可能是模型过于简单或者数据特征不足。那么,下列关于欠拟合的说法错误的是()A.增加模型的复杂度可以缓解欠拟合问题B.收集更多的特征数据可以缓解欠拟合问题C.欠拟合问题比过拟合问题更容易解决D.欠拟合只在小样本数据集上出现,大规模数据集不会出现欠拟合问题7、假设要开发一个自然语言处理的系统,用于文本情感分析,判断一段文字是积极、消极还是中性。考虑到文本的多样性和语义的复杂性。以下哪种技术和方法可能是最有效的?()A.基于词袋模型的朴素贝叶斯分类器,计算简单,但忽略了词序和上下文信息B.循环神经网络(RNN),能够处理序列数据,但可能存在梯度消失或爆炸问题C.长短时记忆网络(LSTM),改进了RNN的长期依赖问题,对长文本处理能力较强,但模型较复杂D.基于Transformer架构的预训练语言模型,如BERT或GPT,具有强大的语言理解能力,但需要大量的计算资源和数据进行微调8、机器学习中,批量归一化(BatchNormalization)的主要作用是()A.加快训练速度B.防止过拟合C.提高模型精度D.以上都是9、当使用朴素贝叶斯算法进行分类时,假设特征之间相互独立。但在实际数据中,如果特征之间存在一定的相关性,这会对算法的性能产生怎样的影响()A.提高分类准确性B.降低分类准确性C.对性能没有影响D.可能提高也可能降低准确性,取决于数据10、假设正在构建一个语音识别系统,需要对输入的语音信号进行预处理和特征提取。语音信号具有时变、非平稳等特点,在预处理阶段,以下哪种操作通常不是必需的?()A.去除背景噪声B.对语音信号进行分帧和加窗C.将语音信号转换为频域表示D.对语音信号进行压缩编码,减少数据量11、某研究团队正在开发一个用于医疗图像诊断的机器学习模型,需要提高模型对小病变的检测能力。以下哪种方法可以尝试?()A.增加数据增强的强度B.使用更复杂的模型架构C.引入注意力机制D.以上方法都可以12、在一个图像生成任务中,例如生成逼真的人脸图像,生成对抗网络(GAN)是一种常用的方法。GAN由生成器和判别器组成,它们在训练过程中相互对抗。以下关于GAN训练过程的描述,哪一项是不正确的?()A.生成器的目标是生成尽可能逼真的图像,以欺骗判别器B.判别器的目标是准确区分真实图像和生成器生成的图像C.训练初期,生成器和判别器的性能都比较差,生成的图像质量较低D.随着训练的进行,判别器的性能逐渐下降,而生成器的性能不断提升13、在一个强化学习场景中,智能体在探索新的策略和利用已有的经验之间需要进行平衡。如果智能体过于倾向于探索,可能会导致效率低下;如果过于倾向于利用已有经验,可能会错过更好的策略。以下哪种方法可以有效地控制这种平衡?()A.调整学习率B.调整折扣因子C.使用ε-贪婪策略,控制探索的概率D.增加训练的轮数14、在特征工程中,独热编码(One-HotEncoding)用于()A.处理类别特征B.处理数值特征C.降维D.以上都不是15、在一个图像生成的任务中,需要根据给定的描述或条件生成逼真的图像。考虑到生成图像的质量、多样性和创新性。以下哪种生成模型可能是最有潜力的?()A.生成对抗网络(GAN),通过对抗训练生成逼真的图像,但可能存在模式崩溃和训练不稳定的问题B.变分自编码器(VAE),能够学习数据的潜在分布并生成新样本,但生成的图像可能较模糊C.自回归模型,如PixelCNN,逐像素生成图像,保证了局部一致性,但生成速度较慢D.扩散模型,通过逐步去噪生成图像,具有较高的质量和多样性,但计算成本较高二、简答题(本大题共3个小题,共15分)1、(本题5分)什么是联邦学习?它的优势和应用场景是什么?2、(本题5分)解释如何使用机器学习进行地震预测。3、(本题5分)机器学习在分子生物学中的应用有哪些?三、论述题(本大题共5个小题,共25分)1、(本题5分)阐述机器学习中的深度学习框架重要性。分析TensorFlow、PyTorch等深度学习框架的特点和优势,以及对机器学习发展的影响。2、(本题5分)分析过拟合和欠拟合的原因及解决方法,讨论在不同算法中如何避免这两种问题。3、(本题5分)论述机器学习在体育数据分析中的应用,如运动员表现评估、比赛战术分析等,分析其对体育竞技的影响。4、(本题5分)论述机器学习在医疗大数据分析中的应用。讨论疾病模式识别、治疗效果评估、医疗资源分配等方面的机器学习方法和挑

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论