版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用待定系数法求二次函数的解析式yxo课前复习例题选讲课堂小结课堂练习2021/6/271课前复习思考二次函数解析式有哪几种表达式?
一般式:y=ax2+bx+c
顶点式:y=a(x-h)2+k
交点式:y=a(x-x1)(x-x2)例题封面2021/6/272例题选讲一般式:y=ax2+bx+c两根式:y=a(x-x1)(x-x2)顶点式:y=a(x-h)2+k解:设所求的二次函数为y=ax2+bx+c由条件得:a-b+c=10a+b+c=44a+2b+c=7解方程得:因此:所求二次函数是:a=2,b=-3,c=5y=2x2-3x+5已知一个二次函数的图象过点(-1,10)、(1,4)、(2,7)三点,求这个函数的解析式?oxy例1例题封面2021/6/273例题选讲解:设所求的二次函数为y=a(x+1)2-3由条件得:已知抛物线的顶点为(-1,-3),与轴交点为(0,-5)求抛物线的解析式?yox点(0,-5)在抛物线上a-3=-5,得a=-2故所求的抛物线解析式为y=-2(x+1)2-3即:y=-2x2-4x-5一般式:y=ax2+bx+c两根式:y=a(x-x1)(x-x2)顶点式:y=a(x-h)2+k例2例题封面2021/6/274例题选讲解:设所求的二次函数为y=a(x+1)(x-1)由条件得:已知抛物线与X轴交于A(-1,0),B(1,0)并经过点M(0,1),求抛物线的解析式?yox点M(0,1)在抛物线上所以:a(0+1)(0-1)=1得:
a=-1故所求的抛物线解析式为y=-(x+1)(x-1)即:y=-x2+1一般式:y=ax2+bx+c两根式:y=a(x-x1)(x-x2)顶点式:y=a(x-h)2+k例题例3封面2021/6/275例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示),求抛物线的解析式.例4设抛物线的解析式为y=ax2+bx+c,解:根据题意可知抛物线经过(0,0),(20,16)和(40,0)三点可得方程组通过利用给定的条件列出a、b、c的三元一次方程组,求出a、b、c的值,从而确定函数的解析式.过程较繁杂,评价封面练习2021/6/276例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示),求抛物线的解析式.例4设抛物线为y=a(x-20)2+16
解:根据题意可知∵点(0,0)在抛物线上,通过利用条件中的顶点和过原点选用顶点式求解,方法比较灵活评价∴所求抛物线解析式为
封面练习2021/6/277例题选讲有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m.现把它的图形放在坐标系里(如图所示),求抛物线的解析式.例4设抛物线为y=ax(x-40)解:根据题意可知∵点(20,16)在抛物线上,选用两根式求解,方法灵活巧妙,过程也较简捷评价封面练习2021/6/278课堂练习一个二次函数,当自变量x=-3时,函数值y=2当自变量x=-1时,函数值y=-1,当自变量x=1时,函数值y=3,求这个二次函数的解析式?已知抛物线与X轴的两个交点的横坐标是、,与Y轴交点的纵坐标是,求这个抛物线的解析式?32121、2、封面小结2021/6/279课堂小结求二次函数解析式的一般方法:已知图象上三点或三对的对应值,通常选择一般式已知图象的顶点坐标*对称轴和最值)通常选择顶点式已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2019-2020南昌市期末检测卷
- 甲型副伤寒病因介绍
- 教科版小学综合实践6下(教案+课件)27 综合实践活动计划表
- 牙齿治疗病因介绍
- 满月脸病因介绍
- 《文献的类型及识别》课件
- (高考英语作文炼句)第15篇译文老师笔记
- 2024年中考英语复习冲刺过关专题07 阅读理解(解析版)
- 开题报告:智能时代应用型本科高校教师核心素养研究
- 开题报告:支撑教育高质量发展的国家教育管理信息化体系研究
- 毕业设计(论文)-履带式微耕机的结构设计
- 标准公差及基本偏差表
- GB∕T 34015.3-2021 车用动力电池回收利用 梯次利用 第3部分:梯次利用要求
- 邀请函模板14
- 电厂保洁技术方案
- 【小课题结题报告】《创设“生活化”情境 激发初中学生学习生物兴趣的研究》结题报告
- 风水立向与磁偏角的应用
- 劳动赔偿协议书
- (精选)复旦大学研修班学习心得体会
- (精选)质量合理化建议100条 [水利工程建设质量管理的措施和建议]
- 农行对医院客户金融服务方案
评论
0/150
提交评论