数学自我小测:角的概念的推广_第1页
数学自我小测:角的概念的推广_第2页
数学自我小测:角的概念的推广_第3页
数学自我小测:角的概念的推广_第4页
数学自我小测:角的概念的推广_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精自我小测1.下列说法正确的是()A.0°~90°的角是第一象限的角B.第一象限的角都是锐角C.平角跟周角不是象限内的角D.钝角是大于第一象限的角2.若α为第一象限的角,则k·180°+α(k∈Z)的终边所在象限为()A.第一象限B.第一或第二象限C.第一或第三象限D.第一或第四象限3.给出下列四个命题:①-75°角是第四象限的角;②225°角是第三象限的角;③475°角是第二象限的角;④-315°角是第一象限的角.其中正确的命题有()A.1个B.2个C.3个D.4个4.若角α与45°角的终边相同,角β与-135°角的终边相同,那么α与β之间的关系是()A.α+β=-50°B.α-β=180°C.α+β=k·360°+180°(k∈Z)D.α-β=k·360°+180°(k∈Z)5.已知集合M=,P=,则集合M与P之间的关系为()A.MPB.PMC.P=MD.P∪M=M6.经过10分钟,分针转了__________度.7.角α和β的终边关于直线y=-x对称,且α=30°,则β=__________.8.表示出顶点在原点,始边重合于x轴的正半轴,终边落在阴影部分内的角的集合(如图所示).9.已知角α的集合为{α|α=k·75°+15°,k∈Z}.(1)其中有几种终边不同的角?(2)其中有几个属于区间(-180°,180°)内的角?(3)写出其中是第三象限的角的一般表示方法.10.若角β的终边落在150°角终边所在的直线上,写出角β的集合;当β∈(-360°,360°)时,求β.参考答案1.答案:C2.解析:若k为偶数,则k·180°+α的终边在第一象限;若k为奇数,则k·180°+α的终边在第三象限.答案:C3.解析:因为-90°<-75°<0°,180°〈225°〈270°,360°+90°<475°〈360°+180°,-360°〈-315°〈-270°,所以①②③④四个命题都是正确的.故选D.答案:D4.解析:α=k1·360°+45°(k1∈Z),β=k2·360°-135°(k2∈Z),α-β=k·360°+180°,k∈Z.答案:D5.解析:因为M={x|x=90°·k+45°,k∈Z}={x|x=(2k+1)·45°,k∈Z},P={x|x=45°·k+45°,k∈Z}={x|x=(k+1)·45°,k∈Z},所以MP.6.答案:A答案:-607.解析:如图,OA为角α的终边,OB为角β的终边,由α=30°,得∠AOC=75°.根据对称性,知∠BOC=75°,因此∠BOx=120°,所以β=k·360°-120°,k∈Z.答案:k·360°-120°,k∈Z8.解:(1){α|k·360°-15°≤α≤k·360°+75°,k∈Z};(2){β|k·360°-135°≤β≤k·360°+135°,k∈Z};(3){γ1|k·360°+30°≤γ1≤k·360°+90°,k∈Z}∪{γ2|k·360°+210°≤γ2≤k·360°+270°,k∈Z}={γ1|2k·180°+30°≤γ1≤2k·180°+90°,k∈Z}∪{γ2|(2k+1)·180°+30°≤γ2≤(2k+1)·180°+90°,k∈Z}={γ|n·180°+30°≤γ≤n·180°+90°,n∈Z}.9.解:(1)在给定的角的集合中,终边不同的角共有五种.(2)由-180°<k·75°+15°<180°,得-〈k<.又因为k∈Z,所以k=-2,-1,0,1,2.所以在给定的角的集合中属于区间(-180°,180°)内的角共有5个.(3)其中是第三象限的角可表示成k·360°+240°,k∈Z.10.解:因为角β的终边落在150°角终边所在的直线上,所以在0°~360°范围内的角为150°和330°.所以β的集合A={β|β=k·360°+150°,k∈Z}∪{β|β=k·360°+330°,k∈Z}={β|β=(2k+1)180°-30°,k∈Z}∪{β|β=(2k+2)180°-30°,k∈Z}={β|β=n·180°-30°,n∈Z},即满足要求的角β的集合A={β|β=n·180°-30°,n∈

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论