计量经济学多元线性回归模型(老师作业要求范本)范文_第1页
计量经济学多元线性回归模型(老师作业要求范本)范文_第2页
计量经济学多元线性回归模型(老师作业要求范本)范文_第3页
计量经济学多元线性回归模型(老师作业要求范本)范文_第4页
计量经济学多元线性回归模型(老师作业要求范本)范文_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

计量经济学•多元线性回归模型应用作业

一、概述

在当今市场上,一国的原油产量与多个因素存在着紧密的联系,例如民用汽车拥有量、

宏观经济等都是影响一国原油产量的重要因素。本次将以中国1990-2006年原油产量

与国内民用汽车拥有量、GDP等因素的数据,通过建计量经济模型来分析上述变量

之间的关系,强调的重要性,从而促进国内原油产业的发展。

二、模型构建过程

1.变量的定义

解释变量:X1民用汽车拥有量,X2电力产量,X.国内生产总值,X,能源消费总量。

被解释变量:Y原油产量

建立计展经济模型:解释原油产品与民用汽车拥有量、电力产量、国内生产总值、

以及能源消费总量之间的关系。

2.模型的数学形式

设定原油产量与五个解释变量相关美系模型,样本回归模型为:

/\AAAAA

y""X”x,"x「四X",

3.数据的收集

该模型的构建过程中共有四个变量,分别是中国从1990—2006年民用汽车拥有量、电

力产量、国内生产总值以及能源消费总量,因此为时间序列数据,最后一个即2006年的数

据作为预测对比数据,收集的数据如下所示:

年份YXIX2X3X4

199019745.18551.364988.25618667.898703

199120130.048606.114927.66821781.5103783

199220271.384691.745148.28826923.5109170

199320768.033817.585886.12735333.9115993

199420896.304941.957005.01148197.9122737

199521419.64410408000.10860793.7131176

199622544.721100.087691.72871176.6138948

199722906.931219.098606.6578973137798

199822986.251319.38821.7584402.3132214

199922920.171452.948311.7189677.1133831

200023345.0181608.919286.41699214.6138553

200123365.651802.0411270.49109655.2143199

200223872.462053.1711648.61120332.7151797

200324248.6162382.9311960.466135822.8174990

200425103.6942693.7114425.257159878.3203227

200525940.3763159.6615852.452183867.9224682

200626305.6643697.3517463.424210871246270

Y原油产量(万吨标准煤)

XI民用汽车拥有量(万辆)

X2电力产量(万吨标准煤)

X3国内生产总值(亿元)

X4能源消费总量(万吨标准煤)

4.用OLS法估计模型

回归结果,散点图分别如下:

DependentVariable:Y

Method:LeastSquares

Date:05/04/09Time:18:45

Sample:19902006

Includedobservations:17

VariableCoefficientStd.Errort-StatisticProb.

20425.46531.159238.454500.0000

-21872140.487949-4.4824650.0007

-01981180.112342-1.7635190.1032

00822710.00821810,010620.0000

00011450.0057330.1997650.8450

R-squared0993314Meandependentvar22751.18

AdjustedR-squared0991085S.D.dependentvar1998.786

S.E.ofregression188.7229Akaikeinfocriterion13,55836

Sumsquaredresid427395.8Schwarzcriterion13.80343

Loglikelihood-110.2461F-statistic445.6871

Durbin-Watsonstat1951792Prob(F-statistic)0.000000

』「()•、

Yi=20425.46-2872X1981X+0.0823X3+0.(X)llX4

d.f=12,R2=0,9933,

Se=(531.1592)(0.4879)(0.1123)(0.0082)(0.0057)

t=(38.4545)(-4.4825)(-1.7635)(10.0106)(0.1998)

。C

•X1

eX2

*X3

*X4

180002000022000240002600028000

Y

三、模型的检验及结果的解释、评价

2.拟合优度检验及统计检验

R2=0.9933,可以看到模型的拟合优度非常高,说明原油产量与上述四个解释变量之间

总体线性关系显著。

・模型总体性检验(F检验):给定显著水平a=0.05,查自由度为(4,12)的F分布表,得

F(4,I2)=3.26,可见该模型的F值远大于临界值,因此该回归方程很明显是显著的。但由

于X1与X2系数不显著且符号为负,与经济意义不符,因此我们认为解释变量之间存

在多重共线性。

•变量的显著性检验(t检验):给定显著水平a=0.05,查自由度为12的t分布表,得

ta/212=2.179,大于该临界值的的显著变量为X3:其余的解释变量未通过检验,说明

这些变量与被解释变量之间不存在显著的线性相关关系。

3.多重共线性的检验

⑴相关系数检验法

CorrelationMa”仅

YX1X2X3X4

Y1.0000000.9576960.9676140.9852250.933689

X10.9576961.0000000.9895570.9913360.979697

X20.9676140.9895571.0000000.9928200.971923

X30.9852250.9913360.9928201.0000000.969240

X40.9336890.9796970.9719230.9692401.000000

DependentVariable:Y

Method:LeastSquares

Date:05/04/09Time:21:23

Sample:19902006

Includedobservations:17

VariableCoefficientStd.Errort-StatisticProb.

C19443.20294.334666.058150.0000

X12.0722190.16077712.888770.0000

R-squared0.917182Meandependentvar22751.18

AdjustedR-squared0.911661S.D.dependentvar1998.786

S.E.ofregression594.0769Akaikeinfocriterion15.72203

Sumsquaredresid5293910.Schwarzcriterion15.82005

Loglikelihood-131.6372F-statistic166.1204

Durbin-Watsonstat0.428702Prob(F-statistic)0.000000

DependentVariable:Y

Method:LeastSquares

Date:05/04/09Time:21:26

Sample:19902006

Includedobservations:17

VariableCoefficientStd.Errort-StatisticProb.

C17906.56349.955151.168180.0000

X20.5106100.03439514.845550.0000

R-squared0.936276Meandependentvar22751.18

AdjustedR-squared0.932028S.D.dependentvar1998.786

S.E.ofregression621.1132Akaikeinfocriterion16.45994

Sumsquaredresid4073385.Schwarzcriterion15.55797

Loglikelihood-129.4095F-statistic220.3902

Durbin-Watsonstat0.883430Prob(F-statistic)0.000000

DependentVariable:Y

Method:LeastSquares

Date:05/04/09Time:21:27

Sample:19902006

Includedobservations:17

VariableCoefficientStd.Errort-StatisticProb.

C19577.31166.2736117.74150.0000

X30.0346860.00155722.279530.0000

R-squared0.970667Meandependentvar22751.18

AdjustedR-squared0.968712S.D.dependentvar1998.786

S.E.ofregression353.5539Akaikeinfocriterion14.68408

Sumsquaredresid1875005.Schwarzcriterion14.78210

Loglikelihood-122.8147F-statistic496.3772

Durbin-Watsonstat0.742903Prob(F-statistic)0.000000

DependentVariable:Y

Method:LeastSquares

Date:05/04/09Time:21:27

Sample:19902006

Includedobservations:17

VariableCoefficientStd.Errort-StatisticProb.

C16161.76676.688323.883610.0000

X40.0446820.00442510.098640.0000

R-squared0.871776Meandependentvar22751.18

AdjustedR-squared0.863228S.D.dependentvar1998.786

S.E.ofregression739.2064Akaikeinfocriterion16,15916

Sumsquaredresid8'96391.Schwarzcriterion16.25719

Loglikelihood-135.3529F-statistic101.9826

Durbin-Watsonstat0.255859Prob(F-statistic)0.000000

可以看出,Y与X3拟合优度R:最大,因此将这个方程作为基本方程,然后往里加入其他

变量。

2.引入第二个变量

DependentVariable:Y

Method:LeastSquares

Date:05/04A)9Time:22:31

Sample:19902006

Includedobservations:17

VariableCoeiicientStd.Errort-StatisticProb.

C19864.14104.2852190.478900000

X30.0731060.00657511.118750.0000

X1-2.3819730.404103-5.8944690.0000

R-squared0.991575Meandependentvar22751.18

AdjustedR-squared0.990372S.D.dependentvar1998.786

S.E.ofregression196.1269Akaikeinfocriterion13.55419

Sumsquaredresid538520.9Schwarzcriterion13.70122

Loglikelihood-112.2106F-statistic823.8987

Durbin-Watsonstat1.979233Prob(F-statistic)0.000000

如上图所示,引入变量X1后,X1的系数通不过显著性检验。

DependentVariable:Y

Method:LeastSquares

Date:05/04/09Time:22:35

Sample:19902006

Includedobservations:17

VariableCoefficientStd.Errort-StatisticProb.

C20909.10611.544334.190650.0000

X30.0604260.0115535.2301850.0001

X2-0.3886140.173173-2.2440800.0415

R-squared0.978427Meandependentvar22751.18

AdjustedR-squared0.975345S.D.dependentvar1998.786

S.E.ofregression313.8446Akaikeinfocriterion14.49446

Sumsquaredresid1378978.Schwarzcriterion14.64150

Loglikelihood-120.2029F-statistic317.4841

Durbin-Watsonstat1.134309Prob(F-statistic)0.000000

如上图所示,引入变量X2后,其系数也通不过显著性检验。

DependentVariable:Y

Method:LeastSquares

Date:05/04/D9Time:22:37

Sample:19902006

Includedobservations:17

VariableCoefficientStd.Errort-StatisticProb.

C2C956.43649.493332.265810.0000

X30.0466450.0056578.2461420.0000

X4-0.0167720.007689-2.1812940.0467

R-squared0.978108Meandependentvar22751.18

AdjustedR-squared0.974980S.D.dependentvar1998.786

S.E.ofregression316.1604Akaikeinfocriterion14,50916

Sumsquaredresid1399403.Schwarzcriterion14.65620

Loglikelihood-120.3279F-statistic312.7479

Durbin-Watsonstat1.105811Prob(F-statistic)0.000000

引入变量X4后,其系数同样通不过显著性检验。

综.上所述,本次模型只引入变量X,,其最终输出结果如下:

DependentVariable:Y

Method:LeastSquares

Date:05/04/09Time:21:27

Sample:19902006

Includedobservations:17

VariableCoefficientStd.Errort-StatisticProb.

C19577.31166.2736117.74150.0000

X30.0346860.00155722.279530.0000

R-squared0.970667Meandependentvar22751.18

AdjustedR-squared0.968712S.D.dependentvar1998.786

S.E.ofregression353.5539Akaikeinfocriterion14.68408

Sumsquaredresid1875005.Schwarzcriterion14,78210

Loglikelihood-122.8147F-statistic496.3772

Durbin-Watsonstat0.742903Prob(F-statistic)0.000000

模型的最终结果为

Y=19577.31+0.0347

(117.7415)(22.2795)

R2=0.9707,*=0.9687,F=496.3772,DW=0.7429

五、异方差检验(怀特检验)

WhiteHeteroskedasticityTest:

F-statistic0.313118Probability0.736153

Obs*R-squared0.727872Probability0.694936

TestEquation:

DependentVariable:RESIDA2

Method:LeastSquares

Date:05/04/09Time:22:53

Sample:19902006

Includedobservations:17

VariableCoefficientStd.Errort-StatisticProb.

C172673.899625.641.7332260.1050

X3-1.6309602.141675-0.7615350.4590

X3A2761E-069.62E-060.7913240.4420

R-squared0.042816Meandependentvar110294.4

AdjustedR-squared-0.093925S.D.dependentvar122707.1

S.E.ofregression128340.4Akaikeinfocriterion26.52155

Sumsquaredresid2.31E+11Schwarzcriterion26,66858

Loglikelihood-222.4331F-statistic0.313118

Durbin-Watsonstat1.106513Prob(F-statistic)0.736153

n*R2=0.7279<⑵=5.991,不存在异方差。

六、自相关检验及修正

Breusch-GodfreySerialCorrelationLMTest:

F-statistic6.034154Probability0.027698

Obs*R-squared5.120287Probability0.023648

TestEquation:

DependentVariable:RESID

Method:LeastSquares

Date:05/04/09Time:23:06

Presamplemissingvaluelaggedresidualssettozero.

VariableCoefficientStd.Errort-StatisticProb.

C60.06185145.93720.4115590.6869

X3-0.0008950.001395-0.6412350.5317

RESID(-1)0.6331800.2577622.4564520.0277

R-squared0.301193Meandependentvar-1.10E-12

AdjustedR-squared0.201364S.D.dependentvar342.3271

S.E.ofregression305.9255Akaikeinfocriterion14,44335

Sumsquaredresid1310266.Schwarzcriterion14.59038

Loglikelihood-119.7684F-statistic3.017077

Durbin-Watsonstat1.658208Prob(F-statistic)0.081377

LM=n*R2=5.1203>(1)=3.841,模型存在一阶自相关。

同理,可通过LM检验法检验是否存在二阶自相关,具体如下:

Breusch-GodfreySerialCorrelationLMTest:

F-statistic2.802700Probability0.097270

Obs*R-squared5.121728Probability0.077238

TestEquation:

DependentVariable:RESID

Method:LeastSquares

Date:05/04/09Time:23:12

Presamplemissingvaluelaggedresidualssettozero.

VariableCoefficientStd.Errort-StatisticProb.

C59,38060152.40560.3896220.7031

X3-0.0008850.001469-0.6025180.5572

RESID(-1)0.6399420.3170722.0182880.0647

RESID(-2)-0.0126740.319160-0.0397110.9689

R-squared0.301278Meandependentvar-1.10E-12

AdjustedR-squared0.140035S.D.dependentvar342.3271

SE.ofregression317.4547Akaikeinfocriterion14.56087

Sumsquaredresid1310107.Schwarzcriterion14.75692

Loglikelihood-r9.7674F-statistic1.868467

Durbin-Watsonstat1.670097Prob(F-statistic)0.184761

。2

LMBRF⑵7</。,。产991,模型不存在二阶自相关,

七、科一奥迭代法修正

Breusch-GodfreySerialCorrelationLMTest:

F-statistic0.243740Probability0.787814

Obs*R-squared0.678973Probability0.712136

TestEquation:

DependentVariable:RESID

Method:LeastSquares

Date:05/0W9Time:23:28

Presamplemissingvaluelaggedresidualssettozero.

VariableCoefficientStd.Errort-StatisticProb.

C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论