




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
计量经济学•多元线性回归模型应用作业
一、概述
在当今市场上,一国的原油产量与多个因素存在着紧密的联系,例如民用汽车拥有量、
宏观经济等都是影响一国原油产量的重要因素。本次将以中国1990-2006年原油产量
与国内民用汽车拥有量、GDP等因素的数据,通过建计量经济模型来分析上述变量
之间的关系,强调的重要性,从而促进国内原油产业的发展。
二、模型构建过程
1.变量的定义
解释变量:X1民用汽车拥有量,X2电力产量,X.国内生产总值,X,能源消费总量。
被解释变量:Y原油产量
建立计展经济模型:解释原油产品与民用汽车拥有量、电力产量、国内生产总值、
以及能源消费总量之间的关系。
2.模型的数学形式
设定原油产量与五个解释变量相关美系模型,样本回归模型为:
/\AAAAA
y""X”x,"x「四X",
3.数据的收集
该模型的构建过程中共有四个变量,分别是中国从1990—2006年民用汽车拥有量、电
力产量、国内生产总值以及能源消费总量,因此为时间序列数据,最后一个即2006年的数
据作为预测对比数据,收集的数据如下所示:
年份YXIX2X3X4
199019745.18551.364988.25618667.898703
199120130.048606.114927.66821781.5103783
199220271.384691.745148.28826923.5109170
199320768.033817.585886.12735333.9115993
199420896.304941.957005.01148197.9122737
199521419.64410408000.10860793.7131176
199622544.721100.087691.72871176.6138948
199722906.931219.098606.6578973137798
199822986.251319.38821.7584402.3132214
199922920.171452.948311.7189677.1133831
200023345.0181608.919286.41699214.6138553
200123365.651802.0411270.49109655.2143199
200223872.462053.1711648.61120332.7151797
200324248.6162382.9311960.466135822.8174990
200425103.6942693.7114425.257159878.3203227
200525940.3763159.6615852.452183867.9224682
200626305.6643697.3517463.424210871246270
Y原油产量(万吨标准煤)
XI民用汽车拥有量(万辆)
X2电力产量(万吨标准煤)
X3国内生产总值(亿元)
X4能源消费总量(万吨标准煤)
4.用OLS法估计模型
回归结果,散点图分别如下:
DependentVariable:Y
Method:LeastSquares
Date:05/04/09Time:18:45
Sample:19902006
Includedobservations:17
VariableCoefficientStd.Errort-StatisticProb.
20425.46531.159238.454500.0000
-21872140.487949-4.4824650.0007
-01981180.112342-1.7635190.1032
00822710.00821810,010620.0000
00011450.0057330.1997650.8450
R-squared0993314Meandependentvar22751.18
AdjustedR-squared0991085S.D.dependentvar1998.786
S.E.ofregression188.7229Akaikeinfocriterion13,55836
Sumsquaredresid427395.8Schwarzcriterion13.80343
Loglikelihood-110.2461F-statistic445.6871
Durbin-Watsonstat1951792Prob(F-statistic)0.000000
』「()•、
Yi=20425.46-2872X1981X+0.0823X3+0.(X)llX4
d.f=12,R2=0,9933,
Se=(531.1592)(0.4879)(0.1123)(0.0082)(0.0057)
t=(38.4545)(-4.4825)(-1.7635)(10.0106)(0.1998)
。C
•X1
eX2
*X3
*X4
180002000022000240002600028000
Y
三、模型的检验及结果的解释、评价
2.拟合优度检验及统计检验
R2=0.9933,可以看到模型的拟合优度非常高,说明原油产量与上述四个解释变量之间
总体线性关系显著。
・模型总体性检验(F检验):给定显著水平a=0.05,查自由度为(4,12)的F分布表,得
F(4,I2)=3.26,可见该模型的F值远大于临界值,因此该回归方程很明显是显著的。但由
于X1与X2系数不显著且符号为负,与经济意义不符,因此我们认为解释变量之间存
在多重共线性。
•变量的显著性检验(t检验):给定显著水平a=0.05,查自由度为12的t分布表,得
ta/212=2.179,大于该临界值的的显著变量为X3:其余的解释变量未通过检验,说明
这些变量与被解释变量之间不存在显著的线性相关关系。
3.多重共线性的检验
⑴相关系数检验法
CorrelationMa”仅
YX1X2X3X4
Y1.0000000.9576960.9676140.9852250.933689
X10.9576961.0000000.9895570.9913360.979697
X20.9676140.9895571.0000000.9928200.971923
X30.9852250.9913360.9928201.0000000.969240
X40.9336890.9796970.9719230.9692401.000000
DependentVariable:Y
Method:LeastSquares
Date:05/04/09Time:21:23
Sample:19902006
Includedobservations:17
VariableCoefficientStd.Errort-StatisticProb.
C19443.20294.334666.058150.0000
X12.0722190.16077712.888770.0000
R-squared0.917182Meandependentvar22751.18
AdjustedR-squared0.911661S.D.dependentvar1998.786
S.E.ofregression594.0769Akaikeinfocriterion15.72203
Sumsquaredresid5293910.Schwarzcriterion15.82005
Loglikelihood-131.6372F-statistic166.1204
Durbin-Watsonstat0.428702Prob(F-statistic)0.000000
DependentVariable:Y
Method:LeastSquares
Date:05/04/09Time:21:26
Sample:19902006
Includedobservations:17
VariableCoefficientStd.Errort-StatisticProb.
C17906.56349.955151.168180.0000
X20.5106100.03439514.845550.0000
R-squared0.936276Meandependentvar22751.18
AdjustedR-squared0.932028S.D.dependentvar1998.786
S.E.ofregression621.1132Akaikeinfocriterion16.45994
Sumsquaredresid4073385.Schwarzcriterion15.55797
Loglikelihood-129.4095F-statistic220.3902
Durbin-Watsonstat0.883430Prob(F-statistic)0.000000
DependentVariable:Y
Method:LeastSquares
Date:05/04/09Time:21:27
Sample:19902006
Includedobservations:17
VariableCoefficientStd.Errort-StatisticProb.
C19577.31166.2736117.74150.0000
X30.0346860.00155722.279530.0000
R-squared0.970667Meandependentvar22751.18
AdjustedR-squared0.968712S.D.dependentvar1998.786
S.E.ofregression353.5539Akaikeinfocriterion14.68408
Sumsquaredresid1875005.Schwarzcriterion14.78210
Loglikelihood-122.8147F-statistic496.3772
Durbin-Watsonstat0.742903Prob(F-statistic)0.000000
DependentVariable:Y
Method:LeastSquares
Date:05/04/09Time:21:27
Sample:19902006
Includedobservations:17
VariableCoefficientStd.Errort-StatisticProb.
C16161.76676.688323.883610.0000
X40.0446820.00442510.098640.0000
R-squared0.871776Meandependentvar22751.18
AdjustedR-squared0.863228S.D.dependentvar1998.786
S.E.ofregression739.2064Akaikeinfocriterion16,15916
Sumsquaredresid8'96391.Schwarzcriterion16.25719
Loglikelihood-135.3529F-statistic101.9826
Durbin-Watsonstat0.255859Prob(F-statistic)0.000000
可以看出,Y与X3拟合优度R:最大,因此将这个方程作为基本方程,然后往里加入其他
变量。
2.引入第二个变量
DependentVariable:Y
Method:LeastSquares
Date:05/04A)9Time:22:31
Sample:19902006
Includedobservations:17
VariableCoeiicientStd.Errort-StatisticProb.
C19864.14104.2852190.478900000
X30.0731060.00657511.118750.0000
X1-2.3819730.404103-5.8944690.0000
R-squared0.991575Meandependentvar22751.18
AdjustedR-squared0.990372S.D.dependentvar1998.786
S.E.ofregression196.1269Akaikeinfocriterion13.55419
Sumsquaredresid538520.9Schwarzcriterion13.70122
Loglikelihood-112.2106F-statistic823.8987
Durbin-Watsonstat1.979233Prob(F-statistic)0.000000
如上图所示,引入变量X1后,X1的系数通不过显著性检验。
DependentVariable:Y
Method:LeastSquares
Date:05/04/09Time:22:35
Sample:19902006
Includedobservations:17
VariableCoefficientStd.Errort-StatisticProb.
C20909.10611.544334.190650.0000
X30.0604260.0115535.2301850.0001
X2-0.3886140.173173-2.2440800.0415
R-squared0.978427Meandependentvar22751.18
AdjustedR-squared0.975345S.D.dependentvar1998.786
S.E.ofregression313.8446Akaikeinfocriterion14.49446
Sumsquaredresid1378978.Schwarzcriterion14.64150
Loglikelihood-120.2029F-statistic317.4841
Durbin-Watsonstat1.134309Prob(F-statistic)0.000000
如上图所示,引入变量X2后,其系数也通不过显著性检验。
DependentVariable:Y
Method:LeastSquares
Date:05/04/D9Time:22:37
Sample:19902006
Includedobservations:17
VariableCoefficientStd.Errort-StatisticProb.
C2C956.43649.493332.265810.0000
X30.0466450.0056578.2461420.0000
X4-0.0167720.007689-2.1812940.0467
R-squared0.978108Meandependentvar22751.18
AdjustedR-squared0.974980S.D.dependentvar1998.786
S.E.ofregression316.1604Akaikeinfocriterion14,50916
Sumsquaredresid1399403.Schwarzcriterion14.65620
Loglikelihood-120.3279F-statistic312.7479
Durbin-Watsonstat1.105811Prob(F-statistic)0.000000
引入变量X4后,其系数同样通不过显著性检验。
综.上所述,本次模型只引入变量X,,其最终输出结果如下:
DependentVariable:Y
Method:LeastSquares
Date:05/04/09Time:21:27
Sample:19902006
Includedobservations:17
VariableCoefficientStd.Errort-StatisticProb.
C19577.31166.2736117.74150.0000
X30.0346860.00155722.279530.0000
R-squared0.970667Meandependentvar22751.18
AdjustedR-squared0.968712S.D.dependentvar1998.786
S.E.ofregression353.5539Akaikeinfocriterion14.68408
Sumsquaredresid1875005.Schwarzcriterion14,78210
Loglikelihood-122.8147F-statistic496.3772
Durbin-Watsonstat0.742903Prob(F-statistic)0.000000
模型的最终结果为
Y=19577.31+0.0347
(117.7415)(22.2795)
R2=0.9707,*=0.9687,F=496.3772,DW=0.7429
五、异方差检验(怀特检验)
WhiteHeteroskedasticityTest:
F-statistic0.313118Probability0.736153
Obs*R-squared0.727872Probability0.694936
TestEquation:
DependentVariable:RESIDA2
Method:LeastSquares
Date:05/04/09Time:22:53
Sample:19902006
Includedobservations:17
VariableCoefficientStd.Errort-StatisticProb.
C172673.899625.641.7332260.1050
X3-1.6309602.141675-0.7615350.4590
X3A2761E-069.62E-060.7913240.4420
R-squared0.042816Meandependentvar110294.4
AdjustedR-squared-0.093925S.D.dependentvar122707.1
S.E.ofregression128340.4Akaikeinfocriterion26.52155
Sumsquaredresid2.31E+11Schwarzcriterion26,66858
Loglikelihood-222.4331F-statistic0.313118
Durbin-Watsonstat1.106513Prob(F-statistic)0.736153
n*R2=0.7279<⑵=5.991,不存在异方差。
六、自相关检验及修正
Breusch-GodfreySerialCorrelationLMTest:
F-statistic6.034154Probability0.027698
Obs*R-squared5.120287Probability0.023648
TestEquation:
DependentVariable:RESID
Method:LeastSquares
Date:05/04/09Time:23:06
Presamplemissingvaluelaggedresidualssettozero.
VariableCoefficientStd.Errort-StatisticProb.
C60.06185145.93720.4115590.6869
X3-0.0008950.001395-0.6412350.5317
RESID(-1)0.6331800.2577622.4564520.0277
R-squared0.301193Meandependentvar-1.10E-12
AdjustedR-squared0.201364S.D.dependentvar342.3271
S.E.ofregression305.9255Akaikeinfocriterion14,44335
Sumsquaredresid1310266.Schwarzcriterion14.59038
Loglikelihood-119.7684F-statistic3.017077
Durbin-Watsonstat1.658208Prob(F-statistic)0.081377
LM=n*R2=5.1203>(1)=3.841,模型存在一阶自相关。
同理,可通过LM检验法检验是否存在二阶自相关,具体如下:
Breusch-GodfreySerialCorrelationLMTest:
F-statistic2.802700Probability0.097270
Obs*R-squared5.121728Probability0.077238
TestEquation:
DependentVariable:RESID
Method:LeastSquares
Date:05/04/09Time:23:12
Presamplemissingvaluelaggedresidualssettozero.
VariableCoefficientStd.Errort-StatisticProb.
C59,38060152.40560.3896220.7031
X3-0.0008850.001469-0.6025180.5572
RESID(-1)0.6399420.3170722.0182880.0647
RESID(-2)-0.0126740.319160-0.0397110.9689
R-squared0.301278Meandependentvar-1.10E-12
AdjustedR-squared0.140035S.D.dependentvar342.3271
SE.ofregression317.4547Akaikeinfocriterion14.56087
Sumsquaredresid1310107.Schwarzcriterion14.75692
Loglikelihood-r9.7674F-statistic1.868467
Durbin-Watsonstat1.670097Prob(F-statistic)0.184761
。2
LMBRF⑵7</。,。产991,模型不存在二阶自相关,
七、科一奥迭代法修正
Breusch-GodfreySerialCorrelationLMTest:
F-statistic0.243740Probability0.787814
Obs*R-squared0.678973Probability0.712136
TestEquation:
DependentVariable:RESID
Method:LeastSquares
Date:05/0W9Time:23:28
Presamplemissingvaluelaggedresidualssettozero.
VariableCoefficientStd.Errort-StatisticProb.
C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美美少年计划面试题及答案
- 肺炎治疗与康复
- 幼儿园运动会方案培训
- 2025年中国女式牛仔裤行业市场全景分析及前景机遇研判报告
- 4S店执行力培训
- 低血钾症状外科护理学
- 教育培训班教师工作总结
- CNAS认证实施流程
- 财务会计人员劳动合同续签与终止范本
- 电信礼仪培训
- 2024-2025学年广东省新部编版七年级历史第二学期期末模拟卷(含答案)
- 2025年高考湖南卷物理真题(解析版)
- 2024-2025学年人教版一年级下数学期末试卷(含答案)
- 2025山西万家寨水务控股集团所属企业校园招聘82人笔试参考题库附带答案详解
- 牙科手术安全核查流程与标准
- 【MOOC】《中国哲学》(北京师范大学) 章节作业中国大学慕课答案
- 中国当代文学专题-003-国开机考复习资料
- 工程塑料 第六章聚甲醛
- YY_T 0681.2-2010无菌医疗器械包装试验方法 第2部分:软性屏障材料的密封强度
- 粘土密封墙专项施工方案
- 化验单申请单模板
评论
0/150
提交评论