苏科版九年级上册数学期末考试试卷含答案解析_第1页
苏科版九年级上册数学期末考试试卷含答案解析_第2页
苏科版九年级上册数学期末考试试卷含答案解析_第3页
苏科版九年级上册数学期末考试试卷含答案解析_第4页
苏科版九年级上册数学期末考试试卷含答案解析_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

苏科版九年级上册数学期末考试试题一、选择题。(每小题只有一个正确答案)1.方程的解是()A.B.C.,D.,2.如图,在中,,若,,则()A. B. C. D.3.二次函数y=3(x-2)2-1的图像顶点坐标是()A.(-2,1) B.(-2,-1) C.(2,1) D.(2,-1)4.如图,OA是⊙O的半径,弦BC⊥OA,D是优弧上一点,如果∠AOB=58º,那么∠ADC的度数为()A.32º B.29º C.58º D.116º5.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是操作组管理组研发组日工资(元/人)260280300人数(人)444A.团队平均日工资不变 B.团队日工资的方差不变C.团队日工资的中位数不变 D.团队日工资的极差不变6.已知二次函数y=ax2+bx+c(a<0<b)的图像与x轴只有一个交点,下列结论:①x<0时,y随x增大而增大;②a+b+c<0;③关于x的方程ax2+bx+c+2=0有两个不相等的实数根.其中所有正确结论的序号是()A.①② B.②③ C.①③ D.①②③二、填空题7.在比例尺为1∶500000的地图上,量得A、B两地的距离为3cm,则A、B两地的实际距离为_____km.8.设,是关于的一元二次方程的两根,则______.9.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.10.若圆锥的底面半径为3cm,高为4cm,则它的侧面展开图的面积为_____cm2.11.将二次函数y=2x2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.12.已知点P是线段AB的黄金分割点,PA>PB,AB=4cm,则PA=____cm.13.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.14.二次函数y=ax2+bx+c(a≠0)的图像如图所示,当y<3时,x的取值范围是____.15.如图,在中,,,、、分别与相切于、、三点,过点作的切线交于点,切点为.当时,的半径为______.16.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.三、解答题17.解方程(1)x2-6x-7=0(2)(2x-1)2=918.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:跳绳成绩(个)132133134135136137一班人数(人)101521二班人数(人)014122(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:众数中位数平均数方差一班a135135c二班134b1351.8表中数据a=,b=,c=;(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.19.某校举行秋季运动会,甲、乙两人报名参加100m比赛,预赛分A、B、C三组进行,运动员通过抽签决定分组.(1)甲分到A组的概率为;(2)求甲、乙恰好分到同一组的概率.20.如图,是的直径,是的弦,的平分线交于点,过点作交的延长线于点,连接.(1)求证:是的切线;(2)若,,则______.21.已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如下表:x…-2-1012…y…50-3-4-3…(1)求该二次函数的表达式;(2)该二次函数图像关于x轴对称的图像所对应的函数表达式为.22.如图,分别以△ABC的边AC和BC为腰向外作等腰直角△DAC和等腰直角△EBC,连接DE.(1)求证:△DAC∽△EBC;(2)求△ABC与△DEC的面积比.23.新建马路需要在道路两旁安装路灯、种植树苗.如图,某道路一侧路灯AB在两棵同样高度的树苗CE和DF之间,树苗高2m,两棵树苗之间的距离CD为16m,在路灯的照射下,树苗CE的影长CG为1m,树苗DF的影长DH为3m,点G、C、B、D、H在一条直线上.求路灯AB的高度.24.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG∶BG=3∶2.设BG的长为2x米.(1)用含x的代数式表示DF=;(2)x为何值时,区域③的面积为180平方米;(3)x为何值时,区域③的面积最大?最大面积是多少?25.已知二次函数y=(x-m)(x+m+4),其中m为常数.(1)求证:不论m为何值,该二次函数的图像与x轴有公共点.(2)若A(-1,a)和B(n,b)是该二次函数图像上的两个点,请判断a、b的大小关系.26.如图,AB是⊙O的直径,弦CD⊥AB于点H,点F是上一点,连接AF交CD的延长线于点E.(1)求证:△AFC∽△ACE;(2)若AC=5,DC=6,当点F为的中点时,求AF的值.27.如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=8.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设AE=m.(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.参考答案1.C【解析】根据直接开平方解方程即可.【详解】直接开平方得:,∴方程的解为:,,故选:C.【点睛】本题考查了用直接开平方法解一元二次方程,特别注意:一个正数的平方根有两个,它们互为相反数.2.A【分析】由得,根据相似三角形的性质:相似三角形周长的比等于相似比即可求解.【详解】∵,∴,∴,故选:A.【点睛】本题考查了相似三角形的判定和性质,熟记相似三角形的性质是解题的关键.3.D【分析】由二次函数的顶点式,即可得出顶点坐标.【详解】解:∵二次函数为y=a(x-h)2+k顶点坐标是(h,k),

∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1).

故选:D.【点睛】此题考查了二次函数的性质,二次函数为y=a(x-h)2+k顶点坐标是(h,k).4.B【分析】根据垂径定理可得,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴,∴∠ADC=∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.B【分析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案.【详解】解:调整前的平均数是:,调整后的平均数是:,则团队平均日工资不变,

故A不符合题意;

调整前的方差是,调整后的方差,则日工资的方差变大,

故B符合题意;

调整前:把这些数从小到大排列为:300,300,300,300,280,280,280,280,260,260,260,260,

最中间两个数的平均数是:,则中位数是280,

调整后:把这些数从小到大排列为:300,300,300,300,300,280,280,260,260,260,260,260,

最中间两个数的平均数是:,则中位数是280,

日工资的中位数不变,

故C不符合题意;

调整前的极差是300-260=40,调整后的极差是300-260=40,则团队日工资的极差不变,

故D不符合题意;

故选:B.【点睛】此题考查了平均数、方差、中位数和极差,用到的知识点:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数;方差公式是.6.C【分析】①根据对称轴及增减性进行判断;②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断.【详解】解:∵a<0<b,∴二次函数的对称轴为x=>0,在y轴右边,且开口向下,∴x<0时,y随x增大而增大;故①正确;根据二次函数的系数,可得图像大致如下,由于对称轴x=的值未知,∴当x=1时,y=a+b+c的值无法判断,故②不正确;由图像可知,y==ax2+bx+c≤0,∴二次函数与直线y=-2有两个不同的交点,∴方程ax2+bx+c=-2有两个不相等的实数根.故③正确.故选C.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.7.15【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,

∴A、B两地的实际距离3×500000=1500000cm=15km,

故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.8.-5.【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方程的两根,那么,.9.【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.10.15【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.11.y=2(x-2)2+3【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,

故答案为:y=2(x-2)2+3.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.12.2-2【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=cm,故答案为:(2-2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的,难度一般.13.115°【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,

由题意可得,∠OCP=90°,∠P=40°,

∴∠COB=50°,

∵OC=OB,

∴∠OCB=∠OBC=65°,

∵四边形ABCD是圆内接四边形,

∴∠D+∠ABC=180°,

∴∠D=115°,

故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.14.-1<x<3【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.15.2或1.5.【分析】利用平行四边形的性质及E、G为切点,证得四边形CGEN为矩形,四边形CGOM、OMEN为正方形,设的半径为,根据切线长定理用表示中的边长,利用勾股定理构建方程即可求解.【详解】如图,连接EG,OM,∵ABCD为平行四边形,∴AD∥BC,且E、G为切点,∴EG为的直径,∵CN⊥AD,∴四边形CGEN为矩形,四边形CGOM、OMEN为正方形,设的半径为,∵AB、BC、CN、NA都是的切线,∴,,,,在中,,,∠CND=90,即,整理得:,解得:,,故答案为:或.【点睛】本题主要考查了切线长定理,特殊平行四边形的判定和性质,利用勾股定理构建方程求解是解题的关键.16.、、【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=3,∴AB==5设AD=x,BD=5-x,∵DE平分△ABC周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED∽△BCA,如图1,BE=1+x∴,即:,解得x=,②△BDE∽△BCA,如图2,BE=1+x∴,即:,解得:x=,BE=>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴,即,解得:x=,④△BDE∽△BCA,如图4,AE=6-x∴,即:,解得:x=,综上:AD的长为、、.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.17.(1)x1=7,x2=-1;(2)x1=2,x2=-1【分析】(1)根据配方法法即可求出答案.(2)根据直接开方法即可求出答案;【详解】解:(1)x2-6x+9-9-7=0(x-3)2=16x-3=±4x1=7,x2=-1(2)2x-1=±32x=1±3x1=2,x2=-1【点睛】本题考查了解一元二次方程,观察所给方程的形式,分别使用配方法和直接开方法求解.18.(1)a=135,b=134.5,c=1.6;(2)①从众数(或中位数)来看,一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩比二班稳定.【分析】(1)根据众数、中位数以及方差的计算公式分别进行解答即可;

(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.【详解】解:(1)一班跳135个的人数最多,所以众数是135(个),即a=135;二班成绩由低到高排列后第5个、第6个成绩分别是134和135,所以中位数是134.5(个),即b=134.5;一班的方差是:故答案是:a=135,b=134.5,c=1.6.(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.【点睛】此题考查了平均数、中位数、众数和方差的定义,从表中得到必要的信息是解题的关键.19.(1);(2)【分析】(1)直接利用概率公式求出甲分到A组的概率;(2)将所有情况列出,找出满足条件:甲、乙恰好分到同一组的情况有几种,计算出概率.【详解】解:(1)(2)甲乙两人抽签分组所有可能出现的结果有:(A,A)、(A,B)、(A,C)、(B,A)、(B,B)、(B,C)、(C,A)、(C,B)、(C,C)共有9种,它们出现的可能性相同.所有的结果中,满足“甲乙分到同一组”(记为事件A)的结果有3种,所以P(A)=.【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.20.(1)证明见解析(2)【分析】(1)根据角平分线的性质及半径相等、等边对等角得到,继而证得,从而证得结论;(2)利用勾股定理求得AB的长,易证得,利用对应边成比例即可求得答案.【详解】(1)证明:连接∵平分∴∵∴∴∴∴∵∴∴,即∵点在上∴是的切线;(2)∵AB是的直径,∴∠ABD=90,∵,,∴,∵平分,∴,∴∴,∴,∴,故答案为:【点睛】本题主要考查了切线的判定以及相似三角形的判定和性质,一般情况下要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.21.(1)y=x2-2x-3;(2)y=-(x-1)2+4.【分析】(1)由(0,-3)、(2,-3)可知,二次函数图像的顶点坐标为(1,-4),于是可设二次函数的表达式为y=a(x-1)2-4,再选一组值代入即可求出a值,于是解析式可求;(2)先根据对称点求出新抛物线的顶点,再确定二次项系数的值即可.【详解】解:(1)观察表格数据可知,二次函数图像的顶点坐标为(1,-4),设二次函数的表达式为y=a(x-1)2-4,把(0,-3)代入y=a(x-1)2-4得,-3=a(0-1)2-4,∴a=1,∴y=(x-1)2-4,即y=x2-2x-3;(2)新抛物线的顶点是(1,-4)关于x轴的对称点(1,4),开口方向与原抛物线相反,开口大小相同,故二次项系数与原抛物线二次项系数互为相反数为-1,∴关于x轴对称的图像所对应的函数表达式为y=-(x-1)2+4.【点睛】本题考查了用待定系数法求二次函数的解析式及抛物线的轴对称变换问题,求出关键点的对称点坐标是解题关键.22.(1)见解析;(2)【分析】(1)利用等腰直角三角形的性质证明△DAC∽△EBC;(2)依据△DAC∽△EBC所得条件,证明△ABC与△DEC相似,通过面积比等于相似比的平方得到结果.【详解】(1)证明:∵△EBC是等腰直角三角形∴BC=BE,∠EBC=90°∴∠BEC=∠BCE=45°.同理∠DAC=90°,∠ADC=∠ACD=45°∴∠EBC=∠DAC=90°,∠BCE=∠ACD=45°.∴△DAC∽△EBC.(2)解:∵在Rt△ACD中,AC2+AD2=CD2,∴2AC2=CD2∴,∵△DAC∽△EBC∴=,∴=,∵∠BCE=∠ACD∴∠BCE-∠ACE=∠ACD-∠ACE,即∠BCA=∠ECD,∵在△DEC和△ABC中,=,∠BCA=∠ECD,∴△DEC∽△ABC,∴S△ABC:S△DEC==.【点睛】本题考查了相似三角形的判定和性质,以及相似三角形的面积比等于相似比的平方,解题的关键在于利用(1)中的相似推导出第二对相似三角形.23.10m【分析】设BC的长度为x,根据题意得出△GCE∽△GBA,△HDF∽△HBA,进而利用相似三角形的性质列出关于x的方程.【详解】解:设BC的长度为xm由题意可知CE∥AB∥DF∵CE∥AB∴△GCE∽△GBA,△HDF∽△HBA∴,即==,即=∴=∴x=4∴AB=10答:路灯AB的高度为10m.【点睛】此题主要考查了相似三角形的应用,得出△GCE∽△GBA,△HDF∽△HBA是解题关键.24.(1)48-12x;(2)x为1或3;(3)x为2时,区域③的面积最大,为240平方米【分析】(1)将DF、EC以外的线段用x表示出来,再用96减去所有线段的长再除以2可得DF的长度;(2)将区域③图形的面积用关于x的代数式表示出来,并令其值为180,求出方程的解即可;(3)令区域③的面积为S,得出x关于S的表达式,得到关于S的二次函数,求出二次函数在x取值范围内的最大值即可.【详解】(1)48-12x(2)根据题意,得5x(48-12x)=180,解得x1=1,x2=3答:x为1或3时,区域③的面积为180平方米(3)设区域③的面积为S,则S=5x(48-12x)=-60x2+240x=-60(x-2)2+240∵-60<0,∴当x=2时,S有最大值,最大值为240答:x为2时,区域③的面积最大,为240平方米【点睛】本题考查了二次函数的实际应用,解题的关键是正确理解题中的等量关系,正确得出区域面积的表达式.25.(1)见解析;(2)①当n=-3时,a=b;②当-3<n<-1时,a>b;③当n<-3或n>-1时,a<b【分析】(1)方法一:当y=0时,(x-m)(x-m-4)=0,解得x1=m,x2=-m-4,即可得到结论;方法二:化简得y=x2+4x-m2-4m,令y=0,可得b2-4ac≥0,即可证明;(2)得出函数图象的对称轴,根据开口方向和函数的增减性分三种情况讨论,判断a与b的大小.【详解】(1)方法一:令y=0,(x-m)(x+m+4)=0,解得x1=m;x2=-m-4.当m=-m-4,即m=-2,方程有两个相等的实数根,故二次函数与x轴有一个公共点;当m≠-m-4,即m≠-2,方程有两个不相等的实数根,故二次函数与x轴有两个公共点.综上不论m为何值,该二次函数的图像与x轴有公共点.方法二:化简得y=x2+4x-m2-4m.令y=0,b2-4ac=4m2+16m+16=4(m+2)2≥0,方程有两个实数根.∴不论m为何值,该二次函数的图像与x轴有公共点.(2)由题意知,函数的图像的对称轴为直线x=-2①当n=-3时,a=b;②当-3<n<-1时,a>b③当n<-3或n>-1时,a<b【点睛】本题考查了二次函数的性质以及与方程的关系,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程,并且注意分情况讨论.26.(1)见解析;(2)【分析】(1)根据条件得出=,推出∠AFC=∠ACD,结合公共角得出三角形相似;(2)根据已知条件证明△ACF≌△DEF,得出AC=DE,利用勾股定理计算出AE的长度,再根据(1)中△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论