2025届上海市虹口区上海外国语大学附属外国语学校高考数学五模试卷含解析_第1页
2025届上海市虹口区上海外国语大学附属外国语学校高考数学五模试卷含解析_第2页
2025届上海市虹口区上海外国语大学附属外国语学校高考数学五模试卷含解析_第3页
2025届上海市虹口区上海外国语大学附属外国语学校高考数学五模试卷含解析_第4页
2025届上海市虹口区上海外国语大学附属外国语学校高考数学五模试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海市虹口区上海外国语大学附属外国语学校高考数学五模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为()A.4 B.3 C.2 D.12.若,则下列关系式正确的个数是()①②③④A.1 B.2 C.3 D.43.在中,为边上的中点,且,则()A. B. C. D.4.已知函数,,若方程恰有三个不相等的实根,则的取值范围为()A. B.C. D.5.已知定义在上的函数满足,且当时,,则方程的最小实根的值为()A. B. C. D.6.设全集U=R,集合,则()A. B. C. D.7.在中所对的边分别是,若,则()A.37 B.13 C. D.8.已知函数的一条切线为,则的最小值为()A. B. C. D.9.设,,则的值为()A. B.C. D.10.已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是()A. B. C. D.111.在菱形中,,,,分别为,的中点,则()A. B. C.5 D.12.已知集合,则全集则下列结论正确的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数若关于的不等式的解集为,则实数的所有可能值之和为_______.14.的展开式中,x5的系数是_________.(用数字填写答案)15.在中,,,,则________,的面积为________.16.已知集合,,则____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二阶矩阵A=abcd,矩阵A属于特征值λ1=-1的一个特征向量为α118.(12分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.(1)求椭圆的方程;(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.19.(12分)已知函数,.(1)当时,求不等式的解集;(2)当时,不等式恒成立,求实数的取值范围.20.(12分)某商店举行促销反馈活动,顾客购物每满200元,有一次抽奖机会(即满200元可以抽奖一次,满400元可以抽奖两次,依次类推).抽奖的规则如下:在一个不透明口袋中装有编号分别为1,2,3,4,5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球编号一次比一次大(如1,2,5),则获得一等奖,奖金40元;若摸得的小球编号一次比一次小(如5,3,1),则获得二等奖,奖金20元;其余情况获得三等奖,奖金10元.(1)某人抽奖一次,求其获奖金额X的概率分布和数学期望;(2)赵四购物恰好满600元,假设他不放弃每次抽奖机会,求他获得的奖金恰好为60元的概率.21.(12分)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为.(Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.22.(10分)诚信是立身之本,道德之基,我校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:第一周第二周第三周第四周第一周期第二周期第三周期(Ⅰ)计算表中十二周“水站诚信度”的平均数;(Ⅱ)若定义水站诚信度高于的为“高诚信度”,以下为“一般信度”则从每个周期的前两周中随机抽取两周进行调研,计算恰有两周是“高诚信度”的概率;(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

由可确定集合中元素一定有的元素,然后列出满足题意的情况,得到答案.【详解】由可知集合中一定有元素2,所以符合要求的集合有,共4种情况,所以选A项.【点睛】考查集合并集运算,属于简单题.2、D【解析】

a,b可看成是与和交点的横坐标,画出图象,数形结合处理.【详解】令,,作出图象如图,由,的图象可知,,,②正确;,,有,①正确;,,有,③正确;,,有,④正确.故选:D.【点睛】本题考查利用函数图象比较大小,考查学生数形结合的思想,是一道中档题.3、A【解析】

由为边上的中点,表示出,然后用向量模的计算公式求模.【详解】解:为边上的中点,,故选:A【点睛】在三角形中,考查中点向量公式和向量模的求法,是基础题.4、B【解析】

由题意可将方程转化为,令,,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,①.因为,①式两边同除以,得.所以方程有三个不等的正实根.记,,则上述方程转化为.即,所以或.因为,当时,,所以在,上单调递增,且时,.当时,,在上单调递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.5、C【解析】

先确定解析式求出的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.【详解】当时,,所以,故当时,,所以,而,所以,又当时,的极大值为1,所以当时,的极大值为,设方程的最小实根为,,则,即,此时令,得,所以最小实根为411.故选:C.【点睛】本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.6、A【解析】

求出集合M和集合N,,利用集合交集补集的定义进行计算即可.【详解】,,则,故选:A.【点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题.7、D【解析】

直接根据余弦定理求解即可.【详解】解:∵,∴,∴,故选:D.【点睛】本题主要考查余弦定理解三角形,属于基础题.8、A【解析】

求导得到,根据切线方程得到,故,设,求导得到函数在上单调递减,在上单调递增,故,计算得到答案.【详解】,则,取,,故,.故,故,.设,,取,解得.故函数在上单调递减,在上单调递增,故.故选:.【点睛】本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力.9、D【解析】

利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.【详解】,,,,,,,,故选:D.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.10、B【解析】

先根据导数的几何意义写出在两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数,结合导数求出最小值,即可选出正确答案.【详解】解:当时,,则;当时,则.设为函数图像上的两点,当或时,,不符合题意,故.则在处的切线方程为;在处的切线方程为.由两切线重合可知,整理得.不妨设则,由可得则当时,的最大值为.则在上单调递减,则.故选:B.【点睛】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出和的函数关系式.本题的易错点是计算.11、B【解析】

据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,,,,,所以.故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.12、D【解析】

化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.【详解】由,则,故,由知,,因此,,,,故选:D【点睛】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由分段函数可得不满足题意;时,,可得,即有,解方程可得,4,结合指数函数的图象和二次函数的图象即可得到所求和.【详解】解:由函数,可得的增区间为,,时,,,时,,当关于的不等式的解集为,,可得不成立,时,时,不成立;,即为,可得,即有,显然,4成立;由和的图象可得在仅有两个交点.综上可得的所有值的和为1.故答案为:1.【点睛】本题考查分段函数的图象和性质,考查不等式的解法,注意运用分类讨论思想方法,考查化简运算能力,属于中档题.14、-189【解析】由二项式定理得,令r=5得x5的系数是.15、【解析】

利用余弦定理可求得的值,进而可得出的值,最后利用三角形的面积公式可得出的面积.【详解】由余弦定理得,则,因此,的面积为.故答案为:;.【点睛】本题考查利用余弦定理解三角形,同时也考查了三角形面积的计算,考查计算能力,属于基础题.16、【解析】

由于,,则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、A=【解析】

运用矩阵定义列出方程组求解矩阵A【详解】由特征值、特征向量定义可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单18、(1)(2)存在;详见解析【解析】

(1)由椭圆的性质得,解得后可得,从而得椭圆方程;(2)设,当直线斜率存在时,设为,代入椭圆方程,整理后应用韦达定理得,代入=0由恒成立问题可求得.验证斜率不存在时也适合即得.【详解】解:(1)由题易知解得,所以椭圆方程为(2)设当直线斜率存在时,设为与椭圆方程联立得,显然所以因为化简解得即所以此时存在定点满足题意当直线斜率不存在时,显然也满足综上所述,存在定点,使成立【点睛】本题考查求椭圆的标准方程,考查直线与椭圆相交问题中的定点问题,解题方法是设而不求的思想方法.设而不求思想方法是直线与圆锥曲线相交问题中常用方法,只要涉及交点坐标,一般就用此法.19、(1)(2)【解析】

(1)当时,,当或时,,所以可转化为,解得,所以不等式的解集为.(2)因为,所以,所以,即,即.当时,因为,所以,不符合题意.当时,解可得,因为当时,不等式恒成立,所以,所以,解得,所以实数的取值范围为.20、(1)分布见解析,期望为;(2).【解析】

(1)先明确X的可能取值,分别求解其概率,然后写出分布列,利用期望公式可求期望;(2)获得的奖金恰好为60元,可能是三次二等奖,也可能是一次一等奖,两次三等奖,然后分别求解概率即可.【详解】(1)由题意知,随机变量X的可能取值为10,20,40且,,所以,即随机变量X的概率分布为X102040P所以随机变量X的数学期望.(2)由题意知,赵四有三次抽奖机会,设恰好获得60元为事件A,因为60=20×3=40+10+10,所以.【点睛】本题主要考查随机变量的分布列及数学期望,明确随机变量的所有取值是求解的第一步,再求解对应的概率,侧重考查数学建模的核心素养.21、(Ⅰ);(Ⅱ).【解析】试题分析:(1)依题意,由点到直线的距离公式可得,又有,联立可求离心率;(2)由(1)设椭圆方程,再设直线方程,与椭圆方程联立,求得,令,可得,即得椭圆方程.试题解析:(Ⅰ)过点的直线方程为,则原点到直线的距离,由,得,解得离心率.(Ⅱ)由(1)知,椭圆的方程为.依题意,圆心是线段的中点,且.易知,不与轴垂直.设其直线方程为,代入(1)得.设,则,.由,得,解得.从而.于是.由,得,解得.故椭圆的方程为.22、(Ⅰ);(Ⅱ);(Ⅲ)两次活动效果均好,理由详见解析.【解析】

(Ⅰ)结合表中的数据,代入平均数公式求解即可;(Ⅱ)设抽到“高诚信度”的事件为,则抽到“一般信度”的事件为,则随机抽取两周,则有两周为“高诚信度”事件为,利用列举法列出所有的基本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论