河北省部分重点高中2025届高考冲刺数学模拟试题含解析_第1页
河北省部分重点高中2025届高考冲刺数学模拟试题含解析_第2页
河北省部分重点高中2025届高考冲刺数学模拟试题含解析_第3页
河北省部分重点高中2025届高考冲刺数学模拟试题含解析_第4页
河北省部分重点高中2025届高考冲刺数学模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省部分重点高中2025届高考冲刺数学模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有()A.72种 B.144种 C.288种 D.360种2.执行如图所示的程序框图,则输出的的值是()A.8 B.32 C.64 D.1283.已知复数,若,则的值为()A.1 B. C. D.4.记集合和集合表示的平面区域分别是和,若在区域内任取一点,则该点落在区域的概率为()A. B. C. D.5.复数(为虚数单位),则等于()A.3 B.C.2 D.6.如图,正三棱柱各条棱的长度均相等,为的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是A.在内总存在与平面平行的线段B.平面平面C.三棱锥的体积为定值D.可能为直角三角形7.函数在的图象大致为()A. B.C. D.8.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种值的表达式纷纷出现,使得值的计算精度也迅速增加.华理斯在1655年求出一个公式:,根据该公式绘制出了估计圆周率的近似值的程序框图,如下图所示,执行该程序框图,已知输出的,若判断框内填入的条件为,则正整数的最小值是A. B. C. D.9.若函数的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数的图像可能是()A. B. C. D.10.已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,,若,则该双曲线的离心率为().A. B. C. D.11.已知变量,满足不等式组,则的最小值为()A. B. C. D.12.已知,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.展开式中,含项的系数为______.14.设函数,则______.15.展开式中的系数为________.16.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.己知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入袋中的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)有最大值,且最大值大于.(1)求的取值范围;(2)当时,有两个零点,证明:.(参考数据:)18.(12分)已知是抛物线:的焦点,点在上,到轴的距离比小1.(1)求的方程;(2)设直线与交于另一点,为的中点,点在轴上,.若,求直线的斜率.19.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列的公差为,等差数列的公差为.设分别是数列的前项和,且,,(1)求数列的通项公式;(2)设,求数列的前项和.20.(12分)已知在多面体中,平面平面,且四边形为正方形,且//,,,点,分别是,的中点.(1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值.21.(12分)在中,角的对边分别为.已知,.(1)若,求;(2)求的面积的最大值.22.(10分)已知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个实根,且,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

利用分步计数原理结合排列求解即可【详解】第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种.选.【点睛】本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题2、C【解析】

根据给定的程序框图,逐次计算,结合判断条件,即可求解.【详解】由题意,执行上述程序框图,可得第1次循环,满足判断条件,;第2次循环,满足判断条件,;第3次循环,满足判断条件,;第4次循环,满足判断条件,;不满足判断条件,输出.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,结合判断条件求解是解答的关键,着重考查了推理与运算能力,属于基础题.3、D【解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.4、C【解析】

据题意可知,是与面积有关的几何概率,要求落在区域内的概率,只要求、所表示区域的面积,然后代入概率公式,计算即可得答案.【详解】根据题意可得集合所表示的区域即为如图所表示:的圆及内部的平面区域,面积为,集合,,表示的平面区域即为图中的,,根据几何概率的计算公式可得,故选:C.【点睛】本题主要考查了几何概率的计算,本题是与面积有关的几何概率模型.解决本题的关键是要准确求出两区域的面积.5、D【解析】

利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.【详解】,所以,,故选:D.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.6、D【解析】

A项用平行于平面ABC的平面与平面MDN相交,则交线与平面ABC平行;B项利用线面垂直的判定定理;C项三棱锥与三棱锥体积相等,三棱锥的底面积是定值,高也是定值,则体积是定值;D项用反证法说明三角形DMN不可能是直角三角形.【详解】A项,用平行于平面ABC的平面截平面MND,则交线平行于平面ABC,故正确;B项,如图:当M、N分别在BB1、CC1上运动时,若满足BM=CN,则线段MN必过正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正确;C项,当M、N分别在BB1、CC1上运动时,△A1DM的面积不变,N到平面A1DM的距离不变,所以棱锥N-A1DM的体积不变,即三棱锥A1-DMN的体积为定值,故正确;D项,若△DMN为直角三角形,则必是以∠MDN为直角的直角三角形,但MN的最大值为BC1,而此时DM,DN的长大于BB1,所以△DMN不可能为直角三角形,故错误.故选D【点睛】本题考查了命题真假判断、棱柱的结构特征、空间想象力和思维能力,意在考查对线面、面面平行、垂直的判定和性质的应用,是中档题.7、C【解析】

先根据函数奇偶性排除B,再根据函数极值排除A;结合特殊值即可排除D,即可得解.【详解】函数,则,所以为奇函数,排除B选项;当时,,所以排除A选项;当时,,排除D选项;综上可知,C为正确选项,故选:C.【点睛】本题考查根据函数解析式判断函数图像,注意奇偶性、单调性、极值与特殊值的使用,属于基础题.8、B【解析】

初始:,,第一次循环:,,继续循环;第二次循环:,,此时,满足条件,结束循环,所以判断框内填入的条件可以是,所以正整数的最小值是3,故选B.9、B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定.故选B.10、A【解析】

直线的方程为,令和双曲线方程联立,再由得到两交点坐标纵坐标关系进行求解即可.【详解】由题意可知直线的方程为,不妨设.则,且将代入双曲线方程中,得到设则由,可得,故则,解得则所以双曲线离心率故选:A【点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交点坐标关系和已知条件即可求解,属于一般性题目.11、B【解析】

先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.12、C【解析】

利用二倍角公式,和同角三角函数的商数关系式,化简可得,即可求得结果.【详解】,所以,即.故选:C.【点睛】本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】

变换得到,展开式的通项为,计算得到答案.【详解】,的展开式的通项为:.含项的系数为:.故答案为:.【点睛】本题考查了二项式定理的应用,意在考查学生的计算能力和应用能力.14、【解析】

由自变量所在定义域范围,代入对应解析式,再由对数加减法运算法则与对数恒等式关系分别求值再相加,即为答案.【详解】因为函数,则因为,则故故答案为:【点睛】本题考查分段函数求值,属于简单题.15、30【解析】

先将问题转化为二项式的系数问题,利用二项展开式的通项公式求出展开式的第项,令的指数分别等于2,4,求出特定项的系数.【详解】由题可得:展开式中的系数等于二项式展开式中的指数为2和4时的系数之和,由于二项式的通项公式为,令,得展开式的的系数为,令,得展开式的的系数为,所以展开式中的系数,故答案为30.【点睛】本题考查利用二项式展开式的通项公式解决二项展开式的特定项的问题,考查学生的转化能力,属于基础题.16、【解析】记小球落入袋中的概率,则,又小球每次遇到黑色障碍物时一直向左或者一直向右下落,小球将落入袋,所以有,则.故本题应填.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】

(1)求出函数的定义域为,,分和两种情况讨论,分析函数的单调性,求出函数的最大值,即可得出关于实数的不等式,进而可求得实数的取值范围;(2)利用导数分析出函数在上递增,在上递减,可得出,由,构造函数,证明出,进而得出,再由函数在区间上的单调性可证得结论.【详解】(1)函数的定义域为,且.当时,对任意的,,此时函数在上为增函数,函数为最大值;当时,令,得.当时,,此时函数单调递增;当时,,此时函数单调递减.所以,函数在处取得极大值,亦即最大值,即,解得.综上所述,实数的取值范围是;(2)当时,,定义域为,,当时,;当时,.所以,函数的单调递增区间为,单调递减区间为.由于函数有两个零点、且,,,构造函数,其中,,令,,当时,,所以,函数在区间上单调递减,则,则.所以,函数在区间上单调递减,,,即,即,,且,而函数在上为减函数,所以,,因此,.【点睛】本题考查利用函数的最值求参数,同时也考查了利用导数证明函数不等式,利用所证不等式的结构构造新函数是解答的关键,考查推理能力与计算能力,属于难题.18、(1)(2)【解析】

(1)由抛物线定义可知,解得,故抛物线的方程为;(2)设直线:,联立,利用韦达定理算出的中点,又,所以直线的方程为,求出,利用求解即可.【详解】(1)设的准线为,过作于,则由抛物线定义,得,因为到的距离比到轴的距离大1,所以,解得,所以的方程为(2)由题意,设直线方程为,由消去,得,设,,则,所以,又因为为的中点,点的坐标为,直线的方程为,令,得,点的坐标为,所以,解得,所以直线的斜率为.【点睛】本题主要考查抛物线的定义,直线与抛物线的位置关系等基础知识,考查学生的运算求解能力.涉及抛物线的弦的中点,斜率问题时,可采用韦达定理或“点差法”求解.19、(1);(2)【解析】

方案一:(1)根据等差数列的通项公式及前n项和公式列方程组,求出和,从而写出数列的通项公式;(2)由第(1)题的结论,写出数列的通项,采用分组求和、等比求和公式以及裂项相消法,求出数列的前项和.其余两个方案与方案一的解法相近似.【详解】解:方案一:(1)∵数列都是等差数列,且,,解得,综上(2)由(1)得:方案二:(1)∵数列都是等差数列,且,解得,.综上,(2)同方案一方案三:(1)∵数列都是等差数列,且.,解得,,.综上,(2)同方案一【点睛】本题考查了等差数列的通项公式、前n项和公式的应用,考查了分组求和、等比求和及裂项相消法求数列的前n项和,属于中档题.20、(1)证明见解析;(2).【解析】

(1)构造直线所在平面,由面面平行推证线面平行;(2)以为坐标原点,建立空间直角坐标系,分别求出两个平面的法向量,再由法向量之间的夹角,求得二面角的余弦值.【详解】(1)过点交于点,连接,如下图所示:因为平面平面,且交线为,又四边形为正方形,故可得,故可得平面,又平面,故可得.在三角形中,因为为中点,,故可得//,为中点;又因为四边形为等腰梯形,是的中点,故可得//;又,且平面,平面,故面面,又因为平面,故面.即证.(2)连接,,作交于点,由(1)可知平面,又因为//,故可得平面,则;又因为//,,故可得即,,两两垂直,则分别以,,为,,轴建立空间直角坐标系,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论