版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省长乐中学2025届高三适应性调研考试数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在上单调递增,则实数的取值范围是()A. B. C. D.2.已知函数,,若成立,则的最小值为()A.0 B.4 C. D.3.抛物线方程为,一直线与抛物线交于两点,其弦的中点坐标为,则直线的方程为()A. B. C. D.4.为计算,设计了如图所示的程序框图,则空白框中应填入()A. B. C. D.5.复数(i是虚数单位)在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.若双曲线的一条渐近线与直线垂直,则该双曲线的离心率为()A.2 B. C. D.7.复数满足(为虚数单位),则的值是()A. B. C. D.8.设,则()A. B. C. D.9.若点是角的终边上一点,则()A. B. C. D.10.设,,则的值为()A. B.C. D.11.如图所示,已知双曲线的右焦点为,双曲线的右支上一点,它关于原点的对称点为,满足,且,则双曲线的离心率是().A. B. C. D.12.如图是一个几何体的三视图,则这个几何体的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲,乙两队参加关于“一带一路”知识竞赛,甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,若两队各出一名队员进行比赛,则出场的两名运动员编号相同的概率为______.14.已知若存在,使得成立的最大正整数为6,则的取值范围为________.15.(5分)已知函数,则不等式的解集为____________.16.某校开展“我身边的榜样”评选活动,现对3名候选人甲、乙、丙进行不记名投票,投票要求详见选票.这3名候选人的得票数(不考虑是否有效)分别为总票数的88%,75%,46%,则本次投票的有效率(有效票数与总票数的比值)最高可能为百分之________.“我身边的榜样”评选选票候选人符号注:1.同意画“○”,不同意画“×”.2.每张选票“○”的个数不超过2时才为有效票.甲乙丙三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,,使得对任意两个不等的正实数,都有恒成立.(1)求的解析式;(2)若方程有两个实根,且,求证:.18.(12分)等差数列的前项和为,已知,.(Ⅰ)求数列的通项公式及前项和为;(Ⅱ)设为数列的前项的和,求证:.19.(12分)设椭圆的左右焦点分别为,离心率是,动点在椭圆上运动,当轴时,.(1)求椭圆的方程;(2)延长分别交椭圆于点(不重合).设,求的最小值.20.(12分)已知为各项均为整数的等差数列,为的前项和,若为和的等比中项,.(1)求数列的通项公式;(2)若,求最大的正整数,使得.21.(12分)如图,空间几何体中,是边长为2的等边三角形,,,,平面平面,且平面平面,为中点.(1)证明:平面;(2)求二面角平面角的余弦值.22.(10分)已知函数().(1)讨论的单调性;(2)若对,恒成立,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
对分类讨论,当,函数在单调递减,当,根据对勾函数的性质,求出单调递增区间,即可求解.【详解】当时,函数在上单调递减,所以,的递增区间是,所以,即.故选:B.【点睛】本题考查函数单调性,熟练掌握简单初等函数性质是解题关键,属于基础题.2、A【解析】
令,进而求得,再转化为函数的最值问题即可求解.【详解】∵∴(),∴,令:,,在上增,且,所以在上减,在上增,所以,所以的最小值为0.故选:A【点睛】本题主要考查了导数在研究函数最值中的应用,考查了转化的数学思想,恰当的用一个未知数来表示和是本题的关键,属于中档题.3、A【解析】
设,,利用点差法得到,所以直线的斜率为2,又过点,再利用点斜式即可得到直线的方程.【详解】解:设,∴,又,两式相减得:,∴,∴,∴直线的斜率为2,又∴过点,∴直线的方程为:,即,故选:A.【点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.4、A【解析】
根据程序框图输出的S的值即可得到空白框中应填入的内容.【详解】由程序框图的运行,可得:S=0,i=0满足判断框内的条件,执行循环体,a=1,S=1,i=1满足判断框内的条件,执行循环体,a=2×(﹣2),S=1+2×(﹣2),i=2满足判断框内的条件,执行循环体,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…观察规律可知:满足判断框内的条件,执行循环体,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此时,应该不满足判断框内的条件,退出循环,输出S的值,所以判断框中的条件应是i<1.故选:A.【点睛】本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满足条件时算法结束,属于基础题.5、B【解析】
利用复数的四则运算以及几何意义即可求解.【详解】解:,则复数(i是虚数单位)在复平面内对应的点的坐标为:,位于第二象限.故选:B.【点睛】本题考查了复数的四则运算以及复数的几何意义,属于基础题.6、B【解析】
由题中垂直关系,可得渐近线的方程,结合,构造齐次关系即得解【详解】双曲线的一条渐近线与直线垂直.∴双曲线的渐近线方程为.,得.则离心率.故选:B【点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.7、C【解析】
直接利用复数的除法的运算法则化简求解即可.【详解】由得:本题正确选项:【点睛】本题考查复数的除法的运算法则的应用,考查计算能力.8、D【解析】
结合指数函数及对数函数的单调性,可判断出,,,即可选出答案.【详解】由,即,又,即,,即,所以.故选:D.【点睛】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.9、A【解析】
根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【详解】由题意,点是角的终边上一点,根据三角函数的定义,可得,则,故选A.【点睛】本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.10、D【解析】
利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.【详解】,,,,,,,,故选:D.【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.11、C【解析】
易得,,又,平方计算即可得到答案.【详解】设双曲线C的左焦点为E,易得为平行四边形,所以,又,故,,,所以,即,故离心率为.故选:C.【点睛】本题考查求双曲线离心率的问题,关键是建立的方程或不等关系,是一道中档题.12、A【解析】
由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解.【详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.则几何体的体积为.故选:.【点睛】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
出场运动员编号相同的事件显然有3种,计算出总的基本事件数,由古典概型概率计算公式求得答案.【详解】甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,出场的两名运动员编号相同的事件数为3,出现的基本事件总数,则出场的两名运动员编号相同的概率为.故答案为:【点睛】本题考查求古典概率的概率问题,属于基础题.14、【解析】
由题意得,分类讨论作出函数图象,求得最值解不等式组即可.【详解】原问题等价于,当时,函数图象如图此时,则,解得:;当时,函数图象如图此时,则,解得:;当时,函数图象如图此时,则,解得:;当时,函数图象如图此时,则,解得:;综上,满足条件的取值范围为.故答案为:【点睛】本题主要考查了对勾函数的图象与性质,函数的最值求解,存在性问题的求解等,考查了分类讨论,转化与化归的思想.15、【解析】
易知函数的定义域为,且,则是上的偶函数.由于在上单调递增,而在上也单调递增,由复合函数的单调性知在上单调递增,又在上单调递增,故知在上单调递增.令,知,则不等式可化为,即,可得,又,是偶函数,可得,由在上单调递增,可得,则,解得,故不等式的解集为.16、91【解析】
设共有选票张,且票对应张数为,由此可构造不等式组化简得到,由投票有效率越高越小,可知,由此计算可得投票有效率.【详解】不妨设共有选票张,投票的有,票的有,票的有,则由题意可得:,化简得:,即,投票有效率越高,越小,则,,故本次投票的有效率(有效票数与总票数的比值)最高可能为.故答案为:.【点睛】本题考查线性规划的实际应用问题,关键是能够根据已知条件构造出变量所满足的关系式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】
(1)根据题意,在上单调递减,求导得,分类讨论的单调性,结合题意,得出的解析式;(2)由为方程的两个实根,得出,,两式相减,分别算出和,利用换元法令和构造函数,根据导数研究单调性,求出,即可证出结论.【详解】(1)根据题意,对任意两个不等的正实数,都有恒成立.则在上单调递减,因为,当时,在内单调递减.,当时,由,有,此时,当时,单调递减,当时,单调递增,综上,,所以.(2)由为方程的两个实根,得,两式相减,可得,因此,令,由,得,则,构造函数.则,所以函数在上单调递增,故,即,可知,故,命题得证.【点睛】本题考查利用导数研究函数的单调性求函数的解析式、以及利用构造函数法证明不等式,考查转化思想、解题分析能力和计算能力.18、(Ⅰ),(Ⅱ)见解析【解析】
(Ⅰ)根据等差数列公式直接计算得到答案.(Ⅱ),根据裂项求和法计算得到得到证明.【详解】(Ⅰ)等差数列的公差为,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.【点睛】本题考查了等差数列的基本量的计算,裂项求和,意在考查学生对于数列公式方法的灵活运用.19、(1);(2)【解析】
(1)根据题意直接计算得到,,得到椭圆方程.(2)不妨设,且,设,代入数据化简得到,故,得到答案.【详解】(1),所以,,化简得,所以,,所以方程为;(2)由题意得,不在轴上,不妨设,且,设,所以由,得,所以,由,得,代入,化简得:,由于,所以,同理可得,所以,所以当时,最小为【点睛】本题考查了椭圆方程,椭圆中的向量运算和最值,意在考查学生的计算能力和综合应用能力.20、(1)(2)1008【解析】
(1)用基本量求出首项和公差,可得通项公式;(2)用裂项相消法求得和,然后解不等式可得.【详解】解:(1)由题得,即解得或因为数列为各项均为整数,所以,即(2)令所以即,解得所以的最大值为1008【点睛】本题考查等差数列的通项公式、前项和公式,考查裂项相消法求数列的和.在等差数列和等比数列中基本量法是解题的基本方法.21、(1)证明见解析(2)【解析】
(1)分别取,的中点,,连接,,,,,要证明平面,只需证明面∥面即可.(2)以点为原点,以为轴,以为轴,以为轴,建立空间直角坐标系,分别计算面的法向量,面的法向量可取,并判断二面角为锐角,再利用计算即可.【详解】(1)证明:分别取,的中点,,连接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以点为原点,以为轴,以为轴,以为轴,建立如图所示空间直角坐标系由面,所以面的法向量可取,点,点,点,,,设面的法向量,所以,取,二面角的平面角为,则为锐角.所以【点睛】本题考查由面面平行证明线面平行以及向量法求二面角的余弦值,考查学生的运算能力,在做此类题时,一定要准确写出点的坐标.22、(1)①当时,在上单调递减,在上单调递增;②当时,在上单调递增;(2).【解析】
(1)求出函数的定义域和导函数,,对讨论,得导函数的正负,得原函数的单调性;(2)法一:由得,分别运用导函数得出函数(),的单调性,和其函数的最值,可得,可得的范围;法二:由得,化为令(),研
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年高中学校寒假工作计划范文
- 总会计师工作总结总会计师工作计划
- 上期八年级语文德育计划范文
- 煤矿三季度生产接续计划汇报
- 大四个人学习计划范文
- 计算机个人学习计划
- 舞蹈教学工作计划模板
- 法律顾问个人年度的计划
- 2024-2024学年度第二学期外联部工作计划
- 《涂料及加工简介》课件
- 人教版英语七年级上册句型转换方法
- 腋窝入路腔镜甲状腺手术
- 放射科工作发展计划方案
- 急诊胸痛的识别
- 中考数学专题复习《实际问题与二次函数应用题(销售问题)》测试卷-附带答案
- 2024年大学计算机基础考试题库附答案(完整版)
- 竣工验收设计总结
- 2024-2029年中国红蓝光治疗仪行业市场现状分析及竞争格局与投资发展研究报告
- 7.5MW15MWh液冷储能系统技术方案
- (2024年)传染病培训课件
- 2024年南京江宁开发区人力资源管理服务有限公司招聘笔试参考题库附带答案详解
评论
0/150
提交评论