版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EvolutionaryGameTheoryAmitBahlCIS620OutlineEGTversusCGTEvolutionaryStableStrategies ConceptsandExamplesReplicatorDynamics ConceptsandExamplesOverviewof2papers Selectionmethods,finitepopulations EGTv.ConventionalGameTheoryModelsusedtostudyinteractivedecisionmaking.Equilibriumisstillatheartofthemodel.Keydifferenceisinthenotionofrationalityofagents.AgentRationalityInGT,oneassumesthatagentsareperfectlyrational.InEGT,trialanderrorprocessgivesstrategiesthatcanbeselectedforbysomeforce(evolution-biological,cultural,etc…).ThislackofrationalityisthepointofdeparturebetweenEGTandGT.EvolutionWheninbiologicalsense,naturalselectionismodeofevolution.StrategiesthatincreaseDarwinianfitnessarepreferable.Frequencydependentselection.EvolutionaryGameTheory(EGT)HasoriginsinworkofR.A.Fisher[TheGeneticTheoryofNaturalSelection(1930)].Fisherstudiedwhysexratioisapproximatelyequalinmanyspecies.MaynardSmithandPriceintroduceconceptofanESS[TheLogicofAnimalConflict(1973)].Taylor,Zeeman,Jonker(1978-1979)providecontinuousdynamicsforEGT(replicatordynamics).ESSApproachESS=NashEquilibrium+StabilityConditionNotionofstabilityappliesonlytoisolatedburstsofmutations.SelectionwilltendtoleadtoanESS,onceatanESSselectionkeepsusthere.ESS-DefinitionConsidera2playersymmetricgamewithESSgivenbyIwithpayoffmatrixE.LetpbeasmallpercentageofpopulationplayingmutantstrategyJ
I.Fitnessgivenby
W(I)=W0+(1-p)E(I,I)+pE(I,J)
W(J)=W0+(1-p)E(J,I)+pE(J,J)RequirethatW(I)>W(J)ESS-DefinitionStandardDefinitionforESS(MaynardSmith).IisanESSifforallJ
I, E(I,I)
E(J,I)and E(I,I)=E(J,I)
E(I,J)>E(J,J)whereEisthepayofffunction.ESS-DefinitionAssumptions: 1)Pairwise,symmetriccontests 2)Asexualinheritance 3)Infinitepopulation 4)CompletemixingESS-ExistenceLetGbeatwo-payersymmetricgamewith2purestrategiessuchthat
E(s1,s1)
E(s2,s1)AND E(s1,s2)
E(s2,s2) thenGhasanESS.ESSExistenceIfa>c,thens1isESS.Ifd>b,thens2isESS.Otherwise,ESSgivenbyplayings1withprobabilityequalto(b-d)/[(b-d)+(a-c)].ESS-Example1ConsidertheHawk-Dovegamewithpayoffmatrix Nashequilibriumgivenby(7/12,5/12).ThisisalsoanESS.ESS-Example1Bishop-CanningsTheorem:IfIisamixedESSwithsupporta,b,c,…,thenE(a,I)=E(b,I)=…=E(I,I).Atastablepolymorphicstate,thefitnessofHawksandDovesmustbethesame.W(H)=W(D)=>TheESSgivenisastablepolymorphism.
StablePolymorphicStateESS-Example2ConsidertheRock-Scissors-PaperGame.Payoffmatrixisgivenby
RSP R-e
1
-1 S-1-e1 P1-1-e ThenI=(1/3,1/3,1/3)isanESSbutstablepolymorphicpopulation1/3R,1/3P,1/3Sisnotstable.ESS-Example3Payoffmatrix:ThenI=(1/3,1/3,1/3)istheuniqueNE,butnotanESSsinceE(I,s1)=E(s1,s1)=1.SexRatiosRecallFisher’sanalysisofthesexratio.Whyarethereapproximatelyequalnumbersofmalesandfemalesinapopulation?Greatestproductionofoffspringwouldbeachievedifthereweremanytimesmorefemalesthanmales.SexRatiosLetsexratiobesmalesand(1-s)females.W(s,s’)=fitnessofplayingsinpopulation ofs’FitnessisthenumberofgrandchildrenW(s,s’)=N2[(1-s)+s(1-s’)/s’] W(s’,s’)=2N2(1-s’)Needs*s.t.sW(s*,s*)
W(s,s*)DynamicsApproachAimstostudyactualevolutionaryprocess.OneApproachisReplicatorDynamics.Replicatordynamicsareasetofdeterministicdifferenceordifferentialequations.RD-Example1Assumptions:Discretetimemodel,non-overlappinggenerations.xi(t)=proportionplayingiattimet(i,x(t))=E(numberofreplacementfor agentplayingiattimet)
j{xj(t)
(j,x(t))}=v(x(t))xi(t+1)=[xi(t)(i,x(t))]/v(x(t))RD-Example1Assumptions:Discretetimemodel,non-overlappinggenerations.xi(t+1)-xi(t)=xi(t)[(i,x(t))-v(x(t))] v(x(t))
RD-Example2Assumptions:overlappinggenerations,discretetimemodel.Intimeperiodoflength
,letfraction
givebirthtoagentsalsoplayingsamestrategy.
j
xj(t)[1+
(j,x(t))]=v(x(t))xi(t+
)=xi(t)[1+
(i,x(t))]
v(x(t))RD-Example2Assumptions:overlappinggenerations,discretetimemodel.xi(t+
)-xi(t)=xi(t)[
(i,x(t))-
v(x(t))] 1+v(x(t))RD-Example3 Assumptions:Continuoustimemodel,overlappinggenerations.Let0,then
dxi
/dt
=
xi(t)[(i,x(t))-v(x(t))]
StabilityLetx(x0,t):
SXR
Sbetheuniquesolutiontothereplicatordynamic.Astatex
Sisstationaryifdx/dt=0.AstatexisstableifitisstationaryandforeveryneighborhoodVofx,thereexistsaU
Vs.t.
x0
U,
tx(x0,t)
V.PropostionsforRDIf(x,x)isaNE,thenxisastationarystateoftheRD.
dxi/dt
=xi(t)[(i,x(t))-v(x(t))] Whatabouttheconverse?Considerpopulationofalldoves.PropostionsforRDIfxisastablestateoftheRD,then(x,x)isaNE.Consideranyperturbationthatintroducesabetterreply.Whatabouttheconverse?Consider:StrongernotionofStabilityAstatex
isasymptoticallystableifitisstableandthereexistsaneighborhoodVofx
s.t.
x0
V,limt
x(x0,t)=x.ESSandRDIngeneral,everyESSisasymptoticallystable.Whatabouttheconverse?
ESSandRDConsiderthefollowinggame:UniqueNEgivenbyx*=(1/3,1/3,1/3).Ifx=(0,1/2,1/2),then E(x,x*)=E(x*,x*)=2/3but E(x,x)=5/4>7/6=E(x*,x).
ESSandRDIn2X2games,xisanESSifandonlyifxisasymptoticallystable.AGame-TheoreticInvestigationofSelectionMethodsUsedinEvolutionaryAlgorithmsFicici,Melnik,PollackSelectionMethodsHowdocommonselectionmethodsusedinevolutionaryalgorithmsfunctioninEGT?Dynamicsandfixedpointsofthegame.Selectionfunctionxi(t+1)=S(F(xi(t)),xi(t)) whereSistheselectionfunction, Fisthefitnessfunction,and xi(t)istheproportionofpopulation playingiattimet.FitnessDependentSelectionf’=(pXf)/(p•f){x(x0,t):t
R}=orbitpassingthroughx0.
TruncationSelection1)Sortbyfitness2)Replacek%oflowestbyk%ofhighestTruncationSelectionConsidertheHawk-DovegamewithESSgivenby(7/12H,5/12D) If.5<xH(t)<7/12,thenxH(t+1)=1. TruncationSelectionMapDiagram:(,)-ESSelectionGivenapopulationofoffspring,thebestarechosentoparentthenextgeneration.Moreextremethantruncationselection.LinearRankSelectionAgentssortedaccordingtofitness.Assignednewfitnessvaluesaccordingtotheirrank.Causesfitnesstochangelinearlywithrank.Cause
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度个人股权转让与股权激励计划合同4篇
- 2025年在线娱乐服务合同
- 2025年借壳上市销售协议
- 2025年化工品供应协议
- 2025年办公用品采购合同
- 2025年仓库租赁业务保密协议
- 2025年度互联网数据中心(IDC)运营管理合同范本4篇
- 二零二五版智慧小区门禁系统采购与维护协议4篇
- 二零二五年度二手船舶购置协议材料船舶买卖3篇
- 2025版储罐租赁及物联网技术应用合同3篇
- 餐厨垃圾收运安全操作规范
- 皮肤内科过敏反应病例分析
- 电影《狮子王》的视听语言解析
- 妊娠合并低钾血症护理查房
- 煤矿反三违培训课件
- 向流程设计要效率
- 2024年中国航空发动机集团招聘笔试参考题库含答案解析
- 当代中外公司治理典型案例剖析(中科院研究生课件)
- 动力管道设计手册-第2版
- 2022年重庆市中考物理试卷A卷(附答案)
- Python绘图库Turtle详解(含丰富示例)
评论
0/150
提交评论