版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四讲实际问题中的空间几何体真题展示2022新高考一卷第四题南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔SKIPIF1<0时,相应水面的面积为SKIPIF1<0;水位为海拔SKIPIF1<0时,相应水面的面积为SKIPIF1<0.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔SKIPIF1<0上升到SKIPIF1<0时,增加的水量约为SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【试题分析】棱台的概念及棱台体积的计算是高中数学的必备知识.考查目标试题巧妙地将增加的水量的计算问题转化为棱台体积的计算问题,体现了数学的应用性,有效考查了学生数学应用方面的学科素养,同时很好地考查了考生的化归与转化、运算求解及数学建模等方面的能力.水库的蓄水量有多大?这是一个很有价值的实际问题.如果将水库看成一个几何体,那么问题就转化为求一个几何体体积的计算问题.试题巧妙地将一个实际问题与数学问题结合起来,通过设置生活实践情境编制棱台体积的计算问题,既考查了考生对必备知识的掌握及运算求解能力,也考查了考生的数学应用能力和创新能力.考生通过对试题的作答,既能有考试的获得感,又能进一步提高学习数学的兴趣.同时,试题对中学教学改革具有积极的引导作用.试题亮点试题通过创设生活实践情境,创造性地将一个实际问题转化为一个纯粹的数学问题.试题考查的知识是中学数学的必备知识,设计的问题具有现实意义,体现了较好的创新性和开放性,有诸多亮点. (1)试题情境为大家所熟悉,设计的问题自然,问题的解决能很好地体现数学的应用价值.试题有效地考查考生对必备知识的掌握程度,考查考生的运算求解、应用创新等关键能力. (2)水库蓄水量的计算问题是一个具有重要意义的实际问题,试题巧妙地将此问题抽象成一个棱台体积的计算问题,具有很好的创新性.题目中蕴含了数学抽象、数学建模等丰富的数学思想.试题对考生从数学角度发现问题、提出问题、分析问题、解决问题的能力提出了较高要求.考生在作答过程中能够深入体会到数学基础知识、基本技能、基本思想、基本活动经验的重要意义. (3)南水北调工程是我国一项具有战略意义的伟大工程,体现了社会主义新时代的建设成就.考生通过作答。能进一步增强爱党、爱国的热忱.试题很好地体现了新时代高考改革的精神,真正实现了高考"立德树人、服务选才、引导教学"的核心功能.知识要点整理一、棱柱、棱锥、棱台的表面积图形表面积多面体多面体的表面积就是围成多面体各个面的面积的和,也就是展开图的面积二、棱柱、棱锥、棱台的体积几何体体积说明棱柱V棱柱=ShS为棱柱的,h为棱柱的棱锥V棱锥=eq\f(1,3)ShS为棱锥的,h为棱锥的棱台V棱台=eq\f(1,3)(S′+eq\r(S′S)+S)hS′,S分别为棱台的,h为棱台的三圆柱、圆锥、圆台的表面积图形表面积公式旋转体圆柱底面积:S底=2πr2侧面积:S侧=表面积:S=圆锥底面积:S底=侧面积:S侧=表面积:S=圆台上底面面积:S上底=下底面面积:S下底=侧面积:S侧=表面积:S=四圆柱、圆锥、圆台的体积几何体体积说明圆柱V圆柱=Sh=圆柱底面圆的半径为r,面积为S,高为h圆锥V圆锥=eq\f(1,3)Sh=eq\f(1,3)πr2h圆锥底面圆的半径为r,面积为S,高为h圆台V圆台=eq\f(1,3)(S+eq\r(SS′)+S′)h=eq\f(1,3)π(r2+rr′+r′2)h圆台上底面圆的半径为r′,面积为S′,下底面圆的半径为r,面积为S,高为h五球的表面积和体积公式1.球的表面积公式S=(R为球的半径).2.球的体积公式V=eq\f(4,3)πR3.三年真题1.如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为SKIPIF1<0,腰为3的等腰三角形,则该几何体的体积为(
)A.23 B.24 C.26 D.272.某几何体的三视图如图所示(单位:SKIPIF1<0),则该几何体的体积(单位:SKIPIF1<0)是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.已知正三棱台的高为1,上、下底面边长分别为SKIPIF1<0和SKIPIF1<0,其顶点都在同一球面上,则该球的表面积为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为SKIPIF1<0,侧面积分别为SKIPIF1<0和SKIPIF1<0,体积分别为SKIPIF1<0和SKIPIF1<0.若SKIPIF1<0,则SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为SKIPIF1<0,且SKIPIF1<0,则该正四棱锥体积的取值范围是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为SKIPIF1<0,两个圆锥的高之比为SKIPIF1<0,则这两个圆锥的体积之和为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为SKIPIF1<0(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为SKIPIF1<0的球,其上点A的纬度是指SKIPIF1<0与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为SKIPIF1<0,记卫星信号覆盖地球表面的表面积为SKIPIF1<0(单位:SKIPIF1<0),则S占地球表面积的百分比约为(
)A.26% B.34% C.42% D.50%10.某一时间段内,从天空降落到地面上的雨水,未经蒸发、渗漏、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:SKIPIF1<0).24h降雨量的等级划分如下:在综合实践活动中,某小组自制了一个底面直径为200mm,高为300mm的圆锥形雨量器.若一次降雨过程中,该雨量器收集的24h的雨水高度是150mm(如图所示),则这24h降雨量的等级是A.小雨 B.中雨 C.大雨 D.暴雨11.已知A,B,C是半径为1的球O的球面上的三个点,且SKIPIF1<0,则三棱锥SKIPIF1<0的体积为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<012.若棱长为SKIPIF1<0的正方体的顶点都在同一球面上,则该球的表面积为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<013.已知SKIPIF1<0为球SKIPIF1<0的球面上的三个点,⊙SKIPIF1<0为SKIPIF1<0的外接圆,若⊙SKIPIF1<0的面积为SKIPIF1<0,SKIPIF1<0,则球SKIPIF1<0的表面积为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<014.已知△ABC是面积为SKIPIF1<0的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0三年模拟1.红灯笼,起源于中国的西汉时期,两千多年来,每逢春节人们便会挂起象征美好团圆意义的红灯笼,营造一种喜庆的氛围.如图1,某球形灯笼的轮廓由三部分组成,上下两部分是两个相同的圆柱的侧面,中间是球面除去上下两个相同球冠剩下的部分.如图2,球冠是由球面被平面截得的一部分,垂直于截面的直径被截得的部分叫做球冠的高,若球冠所在球面的半径为SKIPIF1<0,球冠的高为SKIPIF1<0,则球冠的面积SKIPIF1<0.如图1,已知该灯笼的高为58cm,圆柱的高为5cm,圆柱的底面圆直径为14cm,则围成该灯笼中间球面部分所需布料的面积为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.紫砂壸是中国特有的手工制造陶土工艺品,其制作始于明朝正德年间.紫砂壸的壸型众多,经典的有西施壸、掇球壸、石飘壸、潘壸等.其中,石瓢壸的壸体可以近似看成一个圆台.如图给出了一个石瓢壸的相关数据(单位:SKIPIF1<0),那么该壸的容积约接近于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.木楔子在传统木工中运用广泛,它使得榫卯配合的牢度得到最大化满足,是一种简单的机械工具,是用于填充器物的空隙使其牢固的木橛、木片等.如图为一个木楔子的直观图,其中四边形SKIPIF1<0是边长为2的正方形,且SKIPIF1<0均为正三角形,SKIPIF1<0,则该木楔子的体积为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.如图,长方体SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0,SKIPIF1<0分别为SKIPIF1<0,SKIPIF1<0的中点,则三棱锥SKIPIF1<0的外接球表面积为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.已知边长为SKIPIF1<0的菱形SKIPIF1<0中,SKIPIF1<0,沿对角线SKIPIF1<0把SKIPIF1<0折起,使二面角SKIPIF1<0为直二面角,则三棱锥SKIPIF1<0的外接球的表面积为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.已知SKIPIF1<0均在球SKIPIF1<0的球面上运动,且满足SKIPIF1<0,若三棱锥SKIPIF1<0体积的最大值为6,则球SKIPIF1<0的体积为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为SKIPIF1<0,细沙全部在上部,其高度为圆锥高度的SKIPIF1<0(细管长度忽略不计).假设该沙漏每秒钟漏下SKIPIF1<0的沙,则该沙漏的一个沙时大约是(
)SKIPIF1<0A.1895秒 B.1896秒 C.1985秒 D.2528秒8.如图1是文祥塔,位于浙江省温州市泰顺县城南象山之上,初名象山塔,后人重修时易名为文祥塔.已知该塔六面七层且第七层塔身可近似地视为一个高2.8m、底面边长为2m的正六棱柱,塔顶可近似地视为一个高1m的正六棱锥,如图2所示,则该塔的第七层塔身及其塔顶的表面积之和约为(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<09.若一个圆锥的侧面沿母线展开的平面图形是一个半径为6,圆心角等于SKIPIF1<0的扇形,则这个圆锥的外接球的体积为(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.已知某圆锥的轴截面是顶角为120°的等腰三角形,母线长为4,过圆锥轴的中点作与底面平行的截面,则截面与底面之间的几何体的外接球的表面积为(
)A.64π B.96π C.112π D.144π11.米斗是我国古代官仓,粮栈、米行必备的用具,是称量粮食的量器.如图是一种米斗,可盛米10升(1升=1000cm3),已知盛米部分的形状为正四棱台,且上口宽为18cm,下口宽为24cm,则高约为(
)A.18.8cm B.20.4cm C.22.5cm D.24.2cm12.《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥,若一个直角圆锥的体积是它的表面积的SKIPIF1<0倍,则该直角圆锥的高为(
)A.1 B.SKIPIF1<0 C.2 D.313.SKIPIF1<0年詹希元创制了“五轮沙漏”,流沙从漏斗形的沙池流到初轮边上的沙斗里,驱动初轮,从而带动各级机械齿轮旋转.最后一级齿轮带动在水平面上旋转的中轮,中轮的轴心上有一根指针,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论