2025届山西省晋中市平遥县平遥二中高三第六次模拟考试数学试卷含解析_第1页
2025届山西省晋中市平遥县平遥二中高三第六次模拟考试数学试卷含解析_第2页
2025届山西省晋中市平遥县平遥二中高三第六次模拟考试数学试卷含解析_第3页
2025届山西省晋中市平遥县平遥二中高三第六次模拟考试数学试卷含解析_第4页
2025届山西省晋中市平遥县平遥二中高三第六次模拟考试数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省晋中市平遥县平遥二中高三第六次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为3的正方形将其包含在内,并向该正方形内随机投掷200个点,己知恰有80个点落在阴影部分据此可估计阴影部分的面积是()A. B. C.10 D.2.已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为()A. B. C. D.3.如果实数满足条件,那么的最大值为()A. B. C. D.4.世纪产生了著名的“”猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘加,不断重复这样的运算,经过有限步后,一定可以得到.如图是验证“”猜想的一个程序框图,若输入正整数的值为,则输出的的值是()A. B. C. D.5.,则与位置关系是()A.平行 B.异面C.相交 D.平行或异面或相交6.若复数()在复平面内的对应点在直线上,则等于()A. B. C. D.7.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种8.已知函数,其中,若恒成立,则函数的单调递增区间为()A. B.C. D.9.若,,,则()A. B.C. D.10.若函数在时取得最小值,则()A. B. C. D.11.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遺到、、三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到县的分法有()A.6种 B.12种 C.24种 D.36种12.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是()A.③④ B.①③ C.②③ D.①②二、填空题:本题共4小题,每小题5分,共20分。13.设函数,则______.14.某班星期一共八节课(上午、下午各四节,其中下午最后两节为社团活动),排课要求为:语文、数学、外语、物理、化学各排一节,从生物、历史、地理、政治四科中选排一节.若数学必须安排在上午且与外语不相邻(上午第四节和下午第一节不算相邻),则不同的排法有__________种.15.实数,满足,如果目标函数的最小值为,则的最小值为_______.16.在数列中,,则数列的通项公式_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的短轴的两个端点分别为、,焦距为.(1)求椭圆的方程;(2)已知直线与椭圆有两个不同的交点、,设为直线上一点,且直线、的斜率的积为.证明:点在轴上.18.(12分)已知函数,的最大值为.求实数b的值;当时,讨论函数的单调性;当时,令,是否存在区间,,使得函数在区间上的值域为?若存在,求实数k的取值范围;若不存在,请说明理由.19.(12分)如图,在正四棱柱中,已知,.(1)求异面直线与直线所成的角的大小;(2)求点到平面的距离.20.(12分)已知函数,其中.(Ⅰ)当时,求函数的单调区间;(Ⅱ)设,求证:;(Ⅲ)若对于恒成立,求的最大值.21.(12分)已知,点分别为椭圆的左、右顶点,直线交于另一点为等腰直角三角形,且.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于两点,总使得为锐角,求直线斜率的取值范围.22.(10分)某调查机构为了了解某产品年产量x(吨)对价格y(千克/吨)和利润z的影响,对近五年该产品的年产量和价格统计如下表:x12345y17.016.515.513.812.2(1)求y关于x的线性回归方程;(2)若每吨该产品的成本为12千元,假设该产品可全部卖出,预测当年产量为多少时,年利润w取到最大值?参考公式:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

直接根据几何概型公式计算得到答案.【详解】根据几何概型:,故.故选:.【点睛】本题考查了根据几何概型求面积,意在考查学生的计算能力和应用能力.2、D【解析】

根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.【详解】依题意有,①,②①②得,又因为,所以,在上单调递增,所以函数的单调递增区间为.故选:D.【点睛】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.3、B【解析】

解:当直线过点时,最大,故选B4、C【解析】

列出循环的每一步,可得出输出的的值.【详解】,输入,,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数不成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,成立,跳出循环,输出的值为.故选:C.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.5、D【解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交.选D.6、C【解析】

由题意得,可求得,再根据共轭复数的定义可得选项.【详解】由题意得,解得,所以,所以,故选:C.【点睛】本题考查复数的几何表示和共轭复数的定义,属于基础题.7、B【解析】

根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有C3若甲村有2外科,1名护士,则有C3则总共的分配方案为2×(9+9)=2×18=36种,故选:B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.8、A【解析】

,从而可得,,再解不等式即可.【详解】由已知,,所以,,由,解得,.故选:A.【点睛】本题考查求正弦型函数的单调区间,涉及到恒成立问题,考查学生转化与化归的思想,是一道中档题.9、C【解析】

利用指数函数和对数函数的单调性比较、、三个数与和的大小关系,进而可得出、、三个数的大小关系.【详解】对数函数为上的增函数,则,即;指数函数为上的增函数,则;指数函数为上的减函数,则.综上所述,.故选:C.【点睛】本题考查指数幂与对数式的大小比较,一般利用指数函数和对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.10、D【解析】

利用辅助角公式化简的解析式,再根据正弦函数的最值,求得在函数取得最小值时的值.【详解】解:,其中,,,故当,即时,函数取最小值,所以,故选:D【点睛】本题主要考查辅助角公式,正弦函数的最值的应用,属于基础题.11、B【解析】

分成甲单独到县和甲与另一人一同到县两种情况进行分类讨论,由此求得甲被派遣到县的分法数.【详解】如果甲单独到县,则方法数有种.如果甲与另一人一同到县,则方法数有种.故总的方法数有种.故选:B【点睛】本小题主要考查简答排列组合的计算,属于基础题.12、C【解析】

①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时.【详解】①当直线x、y、z位于正方体的三条共点棱时,不正确;②因为垂直于同一平面的两直线平行,正确;③因为垂直于同一直线的两平面平行,正确;④如x、y、z位于正方体的三个共点侧面时,不正确.故选:C.【点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由自变量所在定义域范围,代入对应解析式,再由对数加减法运算法则与对数恒等式关系分别求值再相加,即为答案.【详解】因为函数,则因为,则故故答案为:【点睛】本题考查分段函数求值,属于简单题.14、1344【解析】

分四种情况讨论即可【详解】解:数学排在第一节时有:数学排在第二节时有:数学排在第三节时有:数学排在第四节时有:所以共有1344种故答案为:1344【点睛】考查排列、组合的应用,注意分类讨论,做到不重不漏;基础题.15、【解析】

作出不等式组对应的平面区域,利用目标函数的最小值为,确定出的值,进而确定出C点坐标,结合目标函数几何意义,从而求得结果.【详解】先做的区域如图可知在三角形ABC区域内,由得可知,直线的截距最大时,取得最小值,此时直线为,作出直线,交于A点,由图象可知,目标函数在该点取得最小值,所以直线也过A点,由,得,代入,得,所以点C的坐标为.等价于点与原点连线的斜率,所以当点为点C时,取得最小值,最小值为,故答案为:.【点睛】该题考查的是有关线性规划的问题,在解题的过程中,注意正确画出约束条件对应的可行域,根据最值求出参数,结合分式型目标函数的意义求得最优解,属于中档题目.16、【解析】

由题意可得,又,数列的奇数项为首项为1,公差为2的等差数列,对分奇数和偶数两种情况,分别求出,从而得到数列的通项公式.【详解】解:∵,∴①,②,①﹣②得:,又∵,∴数列的奇数项为首项为1,公差为2的等差数列,∴当为奇数时,,当为偶数时,则为奇数,∴,∴数列的通项公式,故答案为:.【点睛】本题考查求数列的通项公式,解题关键是由已知递推关系得出,从而确定数列的奇数项成等差数列,求出通项公式后再由已知求出偶数项,要注意结果是分段函数形式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】

(1)由已知条件得出、的值,进而可得出的值,由此可求得椭圆的方程;(2)设点,可得,且,,求出直线的斜率,进而可求得直线与的方程,将直线直线与的方程联立,求出点的坐标,即可证得结论.【详解】(1)由题设,得,所以,即.故椭圆的方程为;(2)设,则,,.所以直线的斜率为,因为直线、的斜率的积为,所以直线的斜率为.直线的方程为,直线的方程为.联立,解得点的纵坐标为.因为点在椭圆上,所以,则,所以点在轴上.【点睛】本题考查椭圆方程的求解,同时也考查了点在定直线的证明,考查计算能力与推理能力,属于中等题.18、(1);(2)时,在单调增;时,在单调递减,在单调递增;时,同理在单调递减,在单调递增;(3)不存在.【解析】分析:(1)利用导数研究函数的单调性,可得当时,取得极大值,也是最大值,由,可得结果;(2)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(3)假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,进而可得结果.详解:(1)由题意得,令,解得,当时,,函数单调递增;当时,,函数单调递减.所以当时,取得极大值,也是最大值,所以,解得.(2)的定义域为.①即,则,故在单调增②若,而,故,则当时,;当及时,故在单调递减,在单调递增.③若,即,同理在单调递减,在单调递增(3)由(1)知,所以,令,则对恒成立,所以在区间内单调递增,所以恒成立,所以函数在区间内单调递增.假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,即方程在区间内是否存在两个不相等的实根,令,,则,设,,则对恒成立,所以函数在区间内单调递增,故恒成立,所以,所以函数在区间内单调递增,所以方程在区间内不存在两个不相等的实根.综上所述,不存在区间,使得函数在区间上的值域是.点睛:本题主要考查利用导数判断函数的单调性以及函数的最值值,属于难题.求函数极值、最值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.19、(1);(2).【解析】

(1)建立空间坐标系,通过求向量与向量的夹角,转化为异面直线与直线所成的角的大小;(2)先求出面的一个法向量,再用点到面的距离公式算出即可.【详解】以为原点,所在直线分别为轴建系,设所以,,所以异面直线与直线所成的角的余弦值为,异面直线与直线所成的角的大小为.(2)因为,,设是面的一个法向量,所以有即,令,,故,又,所以点到平面的距离为.【点睛】本题主要考查向量法求异面直线所成角的大小和点到面的距离,意在考查学生的数学建模以及数学运算能力.20、(Ⅰ)函数的单调增区间为,单调减区间为;(Ⅱ)证明见解析;(Ⅲ).【解析】

(Ⅰ)利用二次求导可得,所以在上为增函数,进而可得函数的单调增区间为,单调减区间为;(Ⅱ)利用导数可得在区间上存在唯一零点,所以函数在递减,在,递增,则,进而可证;(Ⅲ)条件等价于对于恒成立,构造函数,利用导数可得的单调性,即可得到的最小值为,再次构造函数(a),,利用导数得其单调区间,进而求得最大值.【详解】(Ⅰ)当时,,则,所以,又因为,所以在上为增函数,因为,所以当时,,为增函数,当时,,为减函数,即函数的单调增区间为,单调减区间为;(Ⅱ),则令,则(1),,所以在区间上存在唯一零点,设零点为,则,且,当时,,当,,,所以函数在递减,在,递增,,由,得,所以,由于,,从而;(Ⅲ)因为对于恒成立,即对于恒成立,不妨令,因为,,所以的解为,则当时,,为增函数,当时,,为减函数,所以的最小值为,则,不妨令(a),,则(a),解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论