天津市东丽区天津耀华滨海学校2025届高考数学全真模拟密押卷含解析_第1页
天津市东丽区天津耀华滨海学校2025届高考数学全真模拟密押卷含解析_第2页
天津市东丽区天津耀华滨海学校2025届高考数学全真模拟密押卷含解析_第3页
天津市东丽区天津耀华滨海学校2025届高考数学全真模拟密押卷含解析_第4页
天津市东丽区天津耀华滨海学校2025届高考数学全真模拟密押卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市东丽区天津耀华滨海学校2025届高考数学全真模拟密押卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某歌手大赛进行电视直播,比赛现场有名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照,,分组,绘成频率分布直方图如下:嘉宾评分嘉宾评分的平均数为,场内外的观众评分的平均数为,所有嘉宾与场内外的观众评分的平均数为,则下列选项正确的是()A. B. C. D.2.如图所示,矩形的对角线相交于点,为的中点,若,则等于().A. B. C. D.3.计算等于()A. B. C. D.4.执行如图所示的程序框图,则输出的结果为()A. B. C. D.5.函数的图象如图所示,则它的解析式可能是()A. B.C. D.6.已知平面向量,满足且,若对每一个确定的向量,记的最小值为,则当变化时,的最大值为()A. B. C. D.17.函数的大致图象是A. B. C. D.8.是的()条件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要9.若复数(为虚数单位),则()A. B. C. D.10.已知奇函数是上的减函数,若满足不等式组,则的最小值为()A.-4 B.-2 C.0 D.411.设数列是等差数列,,.则这个数列的前7项和等于()A.12 B.21 C.24 D.3612.已知集合,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知不等式的解集不是空集,则实数的取值范围是;若不等式对任意实数恒成立,则实数的取值范围是___14.展开式的第5项的系数为_____.15.某同学周末通过抛硬币的方式决定出去看电影还是在家学习,抛一枚硬币两次,若两次都是正面朝上,就在家学习,否则出去看电影,则该同学在家学习的概率为____________.16.已知实数,满足,则目标函数的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,点,点为抛物线上的动点.(1)若的最小值为,求实数的值;(2)设线段的中点为,其中为坐标原点,若,求的面积.18.(12分)在平面直角坐标系中,将曲线(为参数)通过伸缩变换,得到曲线,设直线(为参数)与曲线相交于不同两点,.(1)若,求线段的中点的坐标;(2)设点,若,求直线的斜率.19.(12分)设首项为1的正项数列{an}的前n项和为Sn,数列的前n项和为Tn,且,其中p为常数.(1)求p的值;(2)求证:数列{an}为等比数列;(3)证明:“数列an,2xan+1,2yan+2成等差数列,其中x、y均为整数”的充要条件是“x=1,且y=2”.20.(12分)如图,四棱锥中,底面为直角梯形,∥,为等边三角形,平面底面,为的中点.(1)求证:平面平面;(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.21.(12分)已知函数.(Ⅰ)求的值;(Ⅱ)若,且,求的值.22.(10分)已知四棱锥中,底面为等腰梯形,,,,丄底面.(1)证明:平面平面;(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

计算出、,进而可得出结论.【详解】由表格中的数据可知,,由频率分布直方图可知,,则,由于场外有数万名观众,所以,.故选:B.【点睛】本题考查平均数的大小比较,涉及平均数公式以及频率分布直方图中平均数的计算,考查计算能力,属于基础题.2、A【解析】

由平面向量基本定理,化简得,所以,即可求解,得到答案.【详解】由平面向量基本定理,化简,所以,即,故选A.【点睛】本题主要考查了平面向量基本定理的应用,其中解答熟记平面向量的基本定理,化简得到是解答的关键,着重考查了运算与求解能力,数基础题.3、A【解析】

利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值.【详解】原式.故选:A【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.4、D【解析】循环依次为直至结束循环,输出,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.5、B【解析】

根据定义域排除,求出的值,可以排除,考虑排除.【详解】根据函数图象得定义域为,所以不合题意;选项,计算,不符合函数图象;对于选项,与函数图象不一致;选项符合函数图象特征.故选:B【点睛】此题考查根据函数图象选择合适的解析式,主要利用函数性质分析,常见方法为排除法.6、B【解析】

根据题意,建立平面直角坐标系.令.为中点.由即可求得点的轨迹方程.将变形,结合及平面向量基本定理可知三点共线.由圆切线的性质可知的最小值即为到直线的距离最小值,且当与圆相切时,有最大值.利用圆的切线性质及点到直线距离公式即可求得直线方程,进而求得原点到直线的距离,即为的最大值.【详解】根据题意,设,则由代入可得即点的轨迹方程为又因为,变形可得,即,且所以由平面向量基本定理可知三点共线,如下图所示:所以的最小值即为到直线的距离最小值根据圆的切线性质可知,当与圆相切时,有最大值设切线的方程为,化简可得由切线性质及点到直线距离公式可得,化简可得即所以切线方程为或所以当变化时,到直线的最大值为即的最大值为故选:B【点睛】本题考查了平面向量的坐标应用,平面向量基本定理的应用,圆的轨迹方程问题,圆的切线性质及点到直线距离公式的应用,综合性强,属于难题.7、A【解析】

利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,,可排除D选项;当时,,当时,,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题.8、B【解析】

利用充分条件、必要条件与集合包含关系之间的等价关系,即可得出。【详解】设对应的集合是,由解得且对应的集合是,所以,故是的必要不充分条件,故选B。【点睛】本题主要考查充分条件、必要条件的判断方法——集合关系法。设,如果,则是的充分条件;如果B则是的充分不必要条件;如果,则是的必要条件;如果,则是的必要不充分条件。9、B【解析】

根据复数的除法法则计算,由共轭复数的概念写出.【详解】,,故选:B【点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.10、B【解析】

根据函数的奇偶性和单调性得到可行域,画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】奇函数是上的减函数,则,且,画出可行域和目标函数,,即,表示直线与轴截距的相反数,根据平移得到:当直线过点,即时,有最小值为.故选:.【点睛】本题考查了函数的单调性和奇偶性,线性规划问题,意在考查学生的综合应用能力,画出图像是解题的关键.11、B【解析】

根据等差数列的性质可得,由等差数列求和公式可得结果.【详解】因为数列是等差数列,,所以,即,又,所以,,故故选:B【点睛】本题主要考查了等差数列的通项公式,性质,等差数列的和,属于中档题.12、C【解析】

由题意和交集的运算直接求出.【详解】∵集合,∴.故选:C.【点睛】本题考查了集合的交集运算.集合进行交并补运算时,常借助数轴求解.注意端点处是实心圆还是空心圆.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用绝对值的几何意义,确定出的最小值,然后根据题意即可得到的取值范围化简不等式,求出的最大值,然后求出结果【详解】的最小值为,则要使不等式的解集不是空集,则有化简不等式有,即而当时满足题意,解得或所以答案为【点睛】本题主要考查的是函数恒成立的问题和绝对值不等式,要注意到绝对值的几何意义,数形结合来解答本题,注意去绝对值时的分类讨论化简14、70【解析】

根据二项式定理的通项公式,可得结果.【详解】由题可知:第5项为故第5项的的系数为故答案为:70.【点睛】本题考查的是二项式定理,属基础题。15、【解析】

采用列举法计算古典概型的概率.【详解】抛掷一枚硬币两次共有4种情况,即(正,正),(正,反),(反,正),(反,反),在家学习只有1种情况,即(正,正),故该同学在家学习的概率为.故答案为:【点睛】本题考查古典概型的概率计算,考查学生的基本计算能力,是一道基础题.16、-1【解析】

作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【详解】作出实数x,y满足对应的平面区域如图阴影所示;由z=x+2y﹣1,得yx,平移直线yx,由图象可知当直线yx经过点A时,直线yx的纵截距最小,此时z最小.由,得A(﹣1,﹣1),此时z的最小值为z=﹣1﹣2﹣1=﹣1,故答案为﹣1.【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法,是基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的值为或.(2)【解析】

(1)分类讨论,当时,线段与抛物线没有公共点,设点在抛物线准线上的射影为,当三点共线时,能取得最小值,利用抛物线的焦半径公式即可求解;当时,线段与抛物线有公共点,利用两点间的距离公式即可求解.(2)由题意可得轴且设,则,代入抛物线方程求出,再利用三角形的面积公式即可求解.【详解】由题,,若线段与抛物线没有公共点,即时,设点在抛物线准线上的射影为,则三点共线时,的最小值为,此时若线段与抛物线有公共点,即时,则三点共线时,的最小值为:,此时综上,实数的值为或.因为,所以轴且设,则,代入抛物线的方程解得于是,所以【点睛】本题考查了抛物线的焦半径公式、直线与抛物线的位置关系中的面积问题,属于中档题.18、(1);(2).【解析】

(1)由l参数方程与椭圆方程联立可得A、B两点参数和,再利用M点的参数为A、B两点参数和的一半即可求M的坐标;(2)利用直线参数方程的几何意义得到,再利用计算即可,但要注意判别式还要大于0.【详解】(1)由已知,曲线的参数方程为(为参数),其普通方程为,当时,将(为参数)代入得,设直线l上A、B两点所对应的参数为,中点M所对应的参数为,则,所以的坐标为;(2)将代入得,则,因为即,所以,故,由得,所以.【点睛】本题考查了伸缩变换、参数方程与普通方程的互化、直线参数方程的几何意义等知识,考查学生的计算能力,是一道中档题.19、(1)p=2;(2)见解析(3)见解析【解析】

(1)取n=1时,由得p=0或2,计算排除p=0的情况得到答案.(2),则,相减得到3an+1=4﹣Sn+1﹣Sn,再化简得到,得到证明.(3)分别证明充分性和必要性,假设an,2xan+1,2yan+2成等差数列,其中x、y均为整数,计算化简得2x﹣2y﹣2=1,设k=x﹣(y﹣2),计算得到k=1,得到答案.【详解】(1)n=1时,由得p=0或2,若p=0时,,当n=2时,,解得a2=0或,而an>0,所以p=0不符合题意,故p=2;(2)当p=2时,①,则②,②﹣①并化简得3an+1=4﹣Sn+1﹣Sn③,则3an+2=4﹣Sn+2﹣Sn+1④,④﹣③得(n∈N*),又因为,所以数列{an}是等比数列,且;(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次为,,,满足,即an,2xan+1,2yan+2成等差数列;必要性:假设an,2xan+1,2yan+2成等差数列,其中x、y均为整数,又,所以,化简得2x﹣2y﹣2=1,显然x>y﹣2,设k=x﹣(y﹣2),因为x、y均为整数,所以当k≥2时,2x﹣2y﹣2>1或2x﹣2y﹣2<1,故当k=1,且当x=1,且y﹣2=0时上式成立,即证.【点睛】本题考查了根据数列求参数,证明等比数列,充要条件,意在考查学生的综合应用能力.20、(1)见解析(2)【解析】

(1)根据等边三角形的性质证得,根据面面垂直的性质定理,证得底面,由此证得,结合证得平面,由此证得:平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成的锐二面角的余弦值.【详解】(1)证明:∵为等边三角形,为的中点,∴∵平面底面,平面底面,∴底面平面,∴又由题意可知为正方形,又,∴平面平面,∴平面平面(2)如图建立空间直角坐标系,则,,,由已知,得,设平面的法向量为,则令,则,∴由(1)知平面的法向量可取为∴∴平面与平面所成的锐二面角的余弦值为.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.21、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)直接代入再由诱导公式计算可得;(Ⅱ)先得到,再根据利用两角差的余弦公式计算可得.【详解】解:(Ⅰ);(Ⅱ)因为所以,由得,又因为,故,所以,所以.【点睛】本题考查了三角函数中的恒等变换应用,属于中档题.22、(1)见证明;(2)【解析】

(1)先证明等腰梯形中,然后证明,即可得到丄平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论